Fan Jianqing, Kim Donggyu
Princeton University.
J Am Stat Assoc. 2018;113(523):1268-1283. doi: 10.1080/01621459.2017.1340888. Epub 2018 Oct 8.
High-frequency financial data allow us to estimate large volatility matrices with relatively short time horizon. Many novel statistical methods have been introduced to address large volatility matrix estimation problems from a high-dimensional Itô process with microstructural noise contamination. Their asymptotic theories require sub-Gaussian or some finite high-order moments assumptions for observed log-returns. These assumptions are at odd with the heavy tail phenomenon that is pandemic in financial stock returns and new procedures are needed to mitigate the influence of heavy tails. In this paper, we introduce the Huber loss function with a diverging threshold to develop a robust realized volatility estimation. We show that it has the sub-Gaussian concentration around the volatility with only finite fourth moments of observed log-returns. With the proposed robust estimator as input, we further regularize it by using the principal orthogonal component thresholding (POET) procedure to estimate the large volatility matrix that admits an approximate factor structure. We establish the asymptotic theories for such low-rank plus sparse matrices. The simulation study is conducted to check the finite sample performance of the proposed estimation methods.
高频金融数据使我们能够在相对较短的时间范围内估计大型波动率矩阵。为解决具有微观结构噪声污染的高维伊藤过程中的大型波动率矩阵估计问题,人们引入了许多新颖的统计方法。它们的渐近理论要求观测到的对数收益率具有次高斯或某些有限高阶矩假设。这些假设与金融股票收益率中普遍存在的重尾现象不一致,因此需要新的方法来减轻重尾的影响。在本文中,我们引入具有发散阈值的Huber损失函数来开发一种稳健的已实现波动率估计方法。我们表明,在观测到的对数收益率仅具有有限四阶矩的情况下,它在波动率周围具有次高斯集中性。以提出的稳健估计量作为输入,我们通过使用主正交分量阈值化(POET)程序对其进行进一步正则化,以估计具有近似因子结构的大型波动率矩阵。我们建立了此类低秩加稀疏矩阵的渐近理论。进行了模拟研究以检验所提出估计方法的有限样本性能。