Suppr超能文献

通过椭圆因子模型进行大协方差估计

LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS.

作者信息

Fan Jianqing, Liu Han, Wang Weichen

机构信息

Dept of Operations Research & Financial Engineering, Sherrerd Hall, Princeton University, Princeton, NJ 08544, USA.

出版信息

Ann Stat. 2018 Aug;46(4):1383-1414. doi: 10.1214/17-AOS1588. Epub 2018 Jun 27.

Abstract

We propose a general Principal Orthogonal complEment Thresholding (POET) framework for large-scale covariance matrix estimation based on the approximate factor model. A set of high level sufficient conditions for the procedure to achieve optimal rates of convergence under different matrix norms is established to better understand how POET works. Such a framework allows us to recover existing results for sub-Gaussian data in a more transparent way that only depends on the concentration properties of the sample covariance matrix. As a new theoretical contribution, for the first time, such a framework allows us to exploit conditional sparsity covariance structure for the heavy-tailed data. In particular, for the elliptical distribution, we propose a robust estimator based on the marginal and spatial Kendall's tau to satisfy these conditions. In addition, we study conditional graphical model under the same framework. The technical tools developed in this paper are of general interest to high dimensional principal component analysis. Thorough numerical results are also provided to back up the developed theory.

摘要

我们基于近似因子模型提出了一个用于大规模协方差矩阵估计的通用主正交补阈值化(POET)框架。建立了一组高级充分条件,以使该过程在不同矩阵范数下实现最优收敛速率,从而更好地理解POET的工作原理。这样一个框架使我们能够以一种更透明的方式恢复次高斯数据的现有结果,这种方式仅依赖于样本协方差矩阵的集中特性。作为一项新的理论贡献,该框架首次使我们能够利用重尾数据的条件稀疏协方差结构。特别是对于椭圆分布,我们基于边际和空间肯德尔秩相关系数提出了一种稳健估计器以满足这些条件。此外,我们在相同框架下研究条件图形模型。本文开发的技术工具对高维主成分分析具有普遍意义。还提供了详尽的数值结果来支持所发展的理论。

相似文献

1
LARGE COVARIANCE ESTIMATION THROUGH ELLIPTICAL FACTOR MODELS.
Ann Stat. 2018 Aug;46(4):1383-1414. doi: 10.1214/17-AOS1588. Epub 2018 Jun 27.
2
Large Covariance Estimation by Thresholding Principal Orthogonal Complements.
J R Stat Soc Series B Stat Methodol. 2013 Sep 1;75(4). doi: 10.1111/rssb.12016.
3
Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution.
Bernoulli (Andover). 2017 Feb;23(1):23-57. doi: 10.3150/15-BEJ702. Epub 2016 Sep 27.
4
Robust Covariance Estimation for Approximate Factor Models.
J Econom. 2019 Jan;208(1):5-22. doi: 10.1016/j.jeconom.2018.09.003. Epub 2018 Oct 6.
5
Canonical correlation analysis for elliptical copulas.
J Multivar Anal. 2021 May;183. doi: 10.1016/j.jmva.2020.104715. Epub 2020 Nov 23.
6
Asymptotics of empirical eigenstructure for high dimensional spiked covariance.
Ann Stat. 2017 Jun;45(3):1342-1374. doi: 10.1214/16-AOS1487. Epub 2017 Jun 13.
7
Robust High-dimensional Volatility Matrix Estimation for High-Frequency Factor Model.
J Am Stat Assoc. 2018;113(523):1268-1283. doi: 10.1080/01621459.2017.1340888. Epub 2018 Oct 8.
9
Minimax Rate-optimal Estimation of High-dimensional Covariance Matrices with Incomplete Data.
J Multivar Anal. 2016 Sep;150:55-74. doi: 10.1016/j.jmva.2016.05.002. Epub 2016 May 19.
10
A SHRINKAGE PRINCIPLE FOR HEAVY-TAILED DATA: HIGH-DIMENSIONAL ROBUST LOW-RANK MATRIX RECOVERY.
Ann Stat. 2021 Jun;49(3):1239-1266. doi: 10.1214/20-aos1980. Epub 2021 Aug 9.

引用本文的文献

1
A Class of Structured High-Dimensional Dynamic Covariance Matrices.
Commun Math Stat. 2025 Apr;13(2):371-401. doi: 10.1007/s40304-022-00321-7. Epub 2023 Mar 14.
2
Understanding Implicit Regularization in Over-Parameterized Single Index Model.
J Am Stat Assoc. 2023;118(544):2315-2328. doi: 10.1080/01621459.2022.2044824. Epub 2022 Mar 27.
3
PENALIZED REGRESSION FOR MULTIPLE TYPES OF MANY FEATURES WITH MISSING DATA.
Stat Sin. 2023 Apr;33(2):633-662. doi: 10.5705/ss.202020.0401.
5
Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency.
J Bus Econ Stat. 2022;40(4):1523-1537. doi: 10.1080/07350015.2021.1938085. Epub 2021 Jul 12.
6
A SHRINKAGE PRINCIPLE FOR HEAVY-TAILED DATA: HIGH-DIMENSIONAL ROBUST LOW-RANK MATRIX RECOVERY.
Ann Stat. 2021 Jun;49(3):1239-1266. doi: 10.1214/20-aos1980. Epub 2021 Aug 9.
7
Robust high dimensional factor models with applications to statistical machine learning.
Stat Sci. 2021 May;36(2):303-327. doi: 10.1214/20-sts785. Epub 2021 Apr 19.
10
Integrating approximate single factor graphical models.
Stat Med. 2020 Jan 30;39(2):146-155. doi: 10.1002/sim.8408. Epub 2019 Nov 20.

本文引用的文献

2
Heterogeneity adjustment with applications to graphical model inference.
Electron J Stat. 2018;12(2):3908-3952. doi: 10.1214/18-EJS1466. Epub 2018 Dec 5.
3
Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions.
J R Stat Soc Series B Stat Methodol. 2017 Jan;79(1):247-265. doi: 10.1111/rssb.12166. Epub 2016 Apr 14.
4
Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution.
Bernoulli (Andover). 2017 Feb;23(1):23-57. doi: 10.3150/15-BEJ702. Epub 2016 Sep 27.
5
Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics.
Biometrika. 2013 Mar;100(1):139-156. doi: 10.1093/biomet/ass058. Epub 2012 Nov 30.
6
PROJECTED PRINCIPAL COMPONENT ANALYSIS IN FACTOR MODELS.
Ann Stat. 2016 Feb;44(1):219-254. doi: 10.1214/15-AOS1364.
7
QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.
Ann Stat. 2015;43(4):1498-1534. doi: 10.1214/14-AOS1307.
8
Optimal Estimation and Rank Detection for Sparse Spiked Covariance Matrices.
Probab Theory Relat Fields. 2015 Apr 1;161(3-4):781-815. doi: 10.1007/s00440-014-0562-z.
10
ADAPTIVE ROBUST VARIABLE SELECTION.
Ann Stat. 2014 Feb 1;42(1):324-351. doi: 10.1214/13-AOS1191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验