Suppr超能文献

贝叶斯桥式回归

Bayesian Bridge Regression.

作者信息

Mallick Himel, Yi Nengjun

机构信息

Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

J Appl Stat. 2018;45(6):988-1008. doi: 10.1080/02664763.2017.1324565. Epub 2017 May 10.

Abstract

Classical bridge regression is known to possess many desirable statistical properties such as oracle, sparsity, and unbiasedness. One outstanding disadvantage of bridge regularization, however, is that it lacks a systematic approach to inference, reducing its flexibility in practical applications. In this study, we propose bridge regression from a Bayesian perspective. Unlike classical bridge regression that summarizes inference using a single point estimate, the proposed Bayesian method provides uncertainty estimates of the regression parameters, allowing coherent inference through the posterior distribution. Under a sparsity assumption non the high-dimensional parameter, we provide sufficient conditions for strong posterior consistency of the Bayesian bridge prior. On simulated datasets, we show that the proposed method performs well compared to several competing methods across a wide range of scenarios. Application to two real datasets further revealed that the proposed method performs as well as or better than published methods while offering the advantage of posterior inference.

摘要

经典桥回归已知具有许多理想的统计特性,如神谕性、稀疏性和无偏性。然而,桥正则化的一个突出缺点是它缺乏一种系统的推断方法,这降低了其在实际应用中的灵活性。在本研究中,我们从贝叶斯角度提出桥回归。与使用单点估计总结推断的经典桥回归不同,所提出的贝叶斯方法提供回归参数的不确定性估计,允许通过后验分布进行连贯推断。在高维参数的稀疏性假设下,我们为贝叶斯桥先验的强后验一致性提供了充分条件。在模拟数据集上,我们表明所提出的方法在广泛的场景中与几种竞争方法相比表现良好。应用于两个真实数据集进一步表明,所提出的方法与已发表的方法表现相当或更好,同时具有后验推断的优势。

相似文献

1
Bayesian Bridge Regression.贝叶斯桥式回归
J Appl Stat. 2018;45(6):988-1008. doi: 10.1080/02664763.2017.1324565. Epub 2017 May 10.
2
The reciprocal Bayesian LASSO.双向贝叶斯 LASSO。
Stat Med. 2021 Sep 30;40(22):4830-4849. doi: 10.1002/sim.9098. Epub 2021 Jun 14.
3
The Bayesian adaptive lasso regression.贝叶斯自适应套索回归。
Math Biosci. 2018 Sep;303:75-82. doi: 10.1016/j.mbs.2018.06.004. Epub 2018 Jun 18.
4
5
Bayesian sparse reduced rank multivariate regression.贝叶斯稀疏降秩多元回归
J Multivar Anal. 2017 May;157:14-28. doi: 10.1016/j.jmva.2017.02.007. Epub 2017 Mar 4.
6
Variable selection in linear-circular regression models.线性-循环回归模型中的变量选择
J Appl Stat. 2022 Aug 12;50(16):3337-3361. doi: 10.1080/02664763.2022.2110860. eCollection 2023.
7
Quantifying Registration Uncertainty With Sparse Bayesian Modelling.基于稀疏贝叶斯模型的配准不确定性量化。
IEEE Trans Med Imaging. 2017 Feb;36(2):607-617. doi: 10.1109/TMI.2016.2623608. Epub 2016 Nov 1.
9
Bayesian EEG source localization using a structured sparsity prior.使用结构化稀疏先验的贝叶斯脑电图源定位
Neuroimage. 2017 Jan 1;144(Pt A):142-152. doi: 10.1016/j.neuroimage.2016.08.064. Epub 2016 Sep 15.

本文引用的文献

1
Bayesian Group Bridge for Bi-level Variable Selection.用于双层变量选择的贝叶斯组桥方法
Comput Stat Data Anal. 2017 Jun;110:115-133. doi: 10.1016/j.csda.2017.01.002. Epub 2017 Jan 18.
2
A New Bayesian Lasso.一种新的贝叶斯套索法。
Stat Interface. 2014;7(4):571-582. doi: 10.4310/SII.2014.v7.n4.a12.
3
Dirichlet-Laplace priors for optimal shrinkage.用于最优收缩的狄利克雷-拉普拉斯先验
J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490. doi: 10.1080/01621459.2014.960967. Epub 2014 Sep 25.
5
Penalized methods for bi-level variable selection.用于双层变量选择的惩罚方法。
Stat Interface. 2009 Jul 1;2(3):369-380. doi: 10.4310/sii.2009.v2.n3.a10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验