Diniz Márcio Augusto, Kim Sungjin, Tighiouart Mourad
Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center 8700 Beverly Blvd, Los Angeles, CA 90048.
J Probab Stat. 2018;2018. doi: 10.1155/2018/8654173. Epub 2018 Nov 1.
A Bayesian adaptive design for dose finding of a combination of two drugs in cancer phase I clinical trials that takes into account patients heterogeneity thought to be related to treatment susceptibility is described. The estimation of the maximum tolerated dose (MTD) curves is a function of a baseline covariate using two cytotoxic agents. A logistic model is used to describe the relationship between the doses, baseline covariate, and the probability of dose limiting toxicity (DLT). Trial design proceeds by treating cohorts of two patients simultaneously using escalation with overdose control (EWOC), where at each stage of the trial, the next dose combination corresponds to the quantile of the current posterior distribution of the MTD of one of two agents at the current dose of the other agent and the next patient's baseline covariate value. The MTD curves are estimated as function of Bayes estimates of the model parameters at the end of trial. Average DLT, pointwise average bias, and percent of dose recommendation at dose combination neighborhoods around the true MTD are compared to the design that uses the covariate to the one that ignores the baseline characteristic. We also examine the performance of the approach under model misspecifications for the true dose-toxicity relationship. The methodology is further illustrated by the case of a pre-specified discrete set of dose combinations.
描述了一种用于癌症I期临床试验中两种药物联合剂量探索的贝叶斯自适应设计,该设计考虑了被认为与治疗易感性相关的患者异质性。使用两种细胞毒性药物时,最大耐受剂量(MTD)曲线的估计是基线协变量的函数。使用逻辑模型来描述剂量、基线协变量与剂量限制毒性(DLT)概率之间的关系。试验设计通过使用过量控制递增法(EWOC)同时治疗两名患者的队列进行,在试验的每个阶段,下一个剂量组合对应于在另一种药物的当前剂量和下一名患者的基线协变量值下,两种药物之一的MTD当前后验分布的分位数。在试验结束时,将MTD曲线估计为模型参数的贝叶斯估计的函数。将真实MTD周围剂量组合邻域的平均DLT、逐点平均偏差和剂量推荐百分比与使用协变量的设计和忽略基线特征的设计进行比较。我们还研究了该方法在真实剂量-毒性关系模型错误指定情况下的性能。通过预先指定的离散剂量组合集的案例进一步说明了该方法。