Suppr超能文献

用于双药一期试验的独立贝塔概率剂量递增设计的一个产物。

A product of independent beta probabilities dose escalation design for dual-agent phase I trials.

作者信息

Mander Adrian P, Sweeting Michael J

机构信息

MRC Biostatistics Unit Hub for Trials Methodology Research, Institute of Public Health, University Forvie Site, Cambridge, CB2 0SR, U.K.

出版信息

Stat Med. 2015 Apr 15;34(8):1261-76. doi: 10.1002/sim.6434. Epub 2015 Jan 29.

Abstract

Dual-agent trials are now increasingly common in oncology research, and many proposed dose-escalation designs are available in the statistical literature. Despite this, the translation from statistical design to practical application is slow, as has been highlighted in single-agent phase I trials, where a 3 + 3 rule-based design is often still used. To expedite this process, new dose-escalation designs need to be not only scientifically beneficial but also easy to understand and implement by clinicians. In this paper, we propose a curve-free (nonparametric) design for a dual-agent trial in which the model parameters are the probabilities of toxicity at each of the dose combinations. We show that it is relatively trivial for a clinician's prior beliefs or historical information to be incorporated in the model and updating is fast and computationally simple through the use of conjugate Bayesian inference. Monotonicity is ensured by considering only a set of monotonic contours for the distribution of the maximum tolerated contour, which defines the dose-escalation decision process. Varied experimentation around the contour is achievable, and multiple dose combinations can be recommended to take forward to phase II. Code for R, Stata and Excel are available for implementation.

摘要

双药试验目前在肿瘤学研究中越来越普遍,统计文献中有许多提出的剂量递增设计。尽管如此,从统计设计到实际应用的转化却很缓慢,这在单药I期试验中已得到凸显,在单药I期试验中,基于3+3规则的设计仍经常被使用。为了加快这一过程,新的剂量递增设计不仅需要在科学上有益,还需要易于临床医生理解和实施。在本文中,我们为双药试验提出了一种无曲线(非参数)设计,其中模型参数是每个剂量组合下的毒性概率。我们表明,将临床医生的先验信念或历史信息纳入模型相对简单,并且通过使用共轭贝叶斯推断进行更新快速且计算简单。通过仅考虑最大耐受轮廓分布的一组单调等高线来确保单调性,该轮廓定义了剂量递增决策过程。可以在轮廓周围进行各种试验,并且可以推荐多个剂量组合进入II期。R、Stata和Excel的代码可供实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc85/4409822/0ac54bfd0715/sim0034-1261-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验