Huang Yucheng, Shi Lei, Su Yue, Hu Yifan, Tong Hanghang, Wang Chaoli, Yang Tong, Wang Deyun, Liang Shuo
IEEE Trans Vis Comput Graph. 2020 Oct;26(10):2944-2960. doi: 10.1109/TVCG.2019.2906900. Epub 2019 Mar 25.
The visualization of evolutionary influence graphs is important for performing many real-life tasks such as citation analysis and social influence analysis. The main challenges include how to summarize large-scale, complex, and time-evolving influence graphs, and how to design effective visual metaphors and dynamic representation methods to illustrate influence patterns over time. In this work, we present Eiffel, an integrated visual analytics system that applies triple summarizations on evolutionary influence graphs in the nodal, relational, and temporal dimensions. In numerical experiments, Eiffel summarization results outperformed those of traditional clustering algorithms with respect to the influence-flow-based objective. Moreover, a flow map representation is proposed and adapted to the case of influence graph summarization, which supports two modes of evolutionary visualization (i.e., flip-book and movie) to expedite the analysis of influence graph dynamics. We conducted two controlled user experiments to evaluate our technique on influence graph summarization and visualization respectively. We also showcased the system in the evolutionary influence analysis of two typical scenarios, the citation influence of scientific papers and the social influence of emerging online events. The evaluation results demonstrate the value of Eiffel in the visual analysis of evolutionary influence graphs.
进化影响图的可视化对于执行许多实际任务(如引文分析和社会影响分析)非常重要。主要挑战包括如何总结大规模、复杂且随时间演变的影响图,以及如何设计有效的视觉隐喻和动态表示方法来展示随时间的影响模式。在这项工作中,我们提出了艾菲尔(Eiffel),这是一个集成的视觉分析系统,它在节点、关系和时间维度上对进化影响图应用三重总结。在数值实验中,就基于影响流的目标而言,艾菲尔的总结结果优于传统聚类算法。此外,还提出了一种流图表示法并将其应用于影响图总结的情况,它支持两种进化可视化模式(即翻页书和电影)以加快对影响图动态的分析。我们分别进行了两项受控用户实验来评估我们在影响图总结和可视化方面的技术。我们还在两个典型场景的进化影响分析中展示了该系统,即科学论文的引文影响和新兴在线事件的社会影响。评估结果证明了艾菲尔在进化影响图视觉分析中的价值。