Lee Joon Sue, Shojaei Borzoyeh, Pendharkar Mihir, McFadden Anthony P, Kim Younghyun, Suominen Henri J, Kjaergaard Morten, Nichele Fabrizio, Zhang Hao, Marcus Charles M, Palmstrøm Chris J
Center for Quantum Devices and Station Q Copenhagen, Niels Bohr Institute , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark.
State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics , Tsinghua University , Beijing 100084 , People's Republic of China.
Nano Lett. 2019 May 8;19(5):3083-3090. doi: 10.1021/acs.nanolett.9b00494. Epub 2019 Apr 15.
One-dimensional (1D) electronic transport and induced superconductivity in semiconductor nanostructures are crucial ingredients to realize topological superconductivity. Our approach for topological superconductivity employs a two-dimensional electron gas (2DEG) formed by an InAs quantum well, cleanly interfaced with an epitaxial superconductor (epi-Al). This epi-Al/InAs quantum well heterostructure is advantageous for fabricating large-scale nanostructures consisting of multiple Majorana zero modes. Here, we demonstrate transport studies of building-blocks using a high-quality epi-Al/InAs 2DEG heterostructure, which could be put together to realize various proposed 1D nanowire-based nanostructures and 2DEG-based networks that could host multiple Majorana zero modes. The studies include (1) gate-defined quasi-1D channels in the InAs 2DEG and (2) quantum point contacts for tunneling spectroscopy, as well as induced superconductivity in (3) a ballistic Al-InAs 2DEG-Al Josephson junction. From 1D transport, systematic evolution of conductance plateaus in half-integer conductance quanta is observed with Landé g-factor of 17, indicating the strong spin-orbit coupling and high quality of the InAs 2DEG. The improved 2DEG quality leads to ballistic Josephson junctions with enhanced characteristic parameters such as I R and I R, the product of superconducting critical current I (and excess current I) and normal resistance R. Our results of electronic transport studies based on the 2D approach suggest that the epitaxial superconductor/2D semiconductor system with improved 2DEG quality is suitable for realizing large-scale nanostructures for quantum computing applications.
半导体纳米结构中的一维(1D)电子输运和诱导超导性是实现拓扑超导性的关键要素。我们实现拓扑超导性的方法采用了由InAs量子阱形成的二维电子气(2DEG),它与外延超导体(外延Al)完美界面结合。这种外延Al/InAs量子阱异质结构有利于制造由多个马约拉纳零模组成的大规模纳米结构。在此,我们展示了使用高质量外延Al/InAs 2DEG异质结构对构建模块的输运研究,该结构可以组合在一起以实现各种提出的基于一维纳米线的纳米结构和基于2DEG的网络,这些结构可以容纳多个马约拉纳零模。这些研究包括:(1)InAs 2DEG中栅极定义的准一维通道;(2)用于隧穿光谱的量子点接触;以及(3)弹道Al-InAs 2DEG-Al约瑟夫森结中的诱导超导性。从一维输运中,观察到在半整数电导量子中电导平台的系统演化,朗德g因子为17,这表明InAs 2DEG具有强自旋轨道耦合和高质量。2DEG质量的提高导致弹道约瑟夫森结具有增强的特征参数,如I R和I R,即超导临界电流I(和过剩电流I)与正常电阻R的乘积。我们基于二维方法的电子输运研究结果表明,具有改进的2DEG质量的外延超导体/二维半导体系统适用于实现用于量子计算应用的大规模纳米结构。