Suppr超能文献

抑制乳酸脱氢酶亚基 B 的表达导致的乳酸酸中毒通过丙酮酸脱氢酶(PDH)-PDH 激酶轴下调线粒体氧化磷酸化。

Lactic acidosis caused by repressed lactate dehydrogenase subunit B expression down-regulates mitochondrial oxidative phosphorylation via the pyruvate dehydrogenase (PDH)-PDH kinase axis.

机构信息

From the Departments of Biochemistry and.

Biomedical Sciences (BK21 Plus), Ajou University School of Medicine, Suwon 16499, Korea.

出版信息

J Biol Chem. 2019 May 10;294(19):7810-7820. doi: 10.1074/jbc.RA118.006095. Epub 2019 Mar 28.

Abstract

Aerobic glycolysis and mitochondrial dysfunction are key metabolic features of cancer cells, but their interplay during cancer development remains unclear. We previously reported that human hepatoma cells with mitochondrial defects exhibit down-regulated lactate dehydrogenase subunit B (LDHB) expression. Here, using several molecular and biochemical assays and informatics analyses, we investigated how LDHB suppression regulates mitochondrial respiratory activity and contributes to liver cancer progression. We found that transcriptional down-regulation is an upstream event during suppressed oxidative phosphorylation. We also observed that LDHB knockdown increases inhibitory phosphorylation of pyruvate dehydrogenase (PDH) via lactate-mediated PDH kinase (PDK) activation and thereby attenuates oxidative phosphorylation activity. Interestingly, monocarboxylate transporter 1 was the major lactate transporter in hepatoma cells, and its expression was essential for PDH phosphorylation by modulating intracellular lactate levels. Finally, bioinformatics analysis of the hepatocellular carcinoma cohort from The Cancer Genome Atlas revealed that a low LDHB/LDHA ratio is statistically significantly associated with poor prognostic outcomes. A low ratio was also associated with a significant enrichment in glycolysis genes and negatively correlated with PDK1 and 2 expression, supporting a close link between LDHB suppression and the PDK-PDH axis. These results suggest that LDHB suppression is a key mechanism that enhances glycolysis and is critically involved in the maintenance and propagation of mitochondrial dysfunction via lactate release in liver cancer progression.

摘要

有氧糖酵解和线粒体功能障碍是癌细胞的关键代谢特征,但它们在癌症发展过程中的相互作用仍不清楚。我们之前报道过,线粒体缺陷的人肝癌细胞表现出乳酸脱氢酶亚基 B(LDHB)表达下调。在这里,我们使用几种分子和生化测定和信息学分析,研究了 LDHB 抑制如何调节线粒体呼吸活性并促进肝癌进展。我们发现转录下调是氧化磷酸化受抑制的上游事件。我们还观察到 LDHB 敲低通过乳酸介导的丙酮酸脱氢酶激酶(PDK)激活增加丙酮酸脱氢酶(PDH)的抑制性磷酸化,从而减弱氧化磷酸化活性。有趣的是,单羧酸转运蛋白 1 是肝癌细胞中主要的乳酸转运蛋白,其表达对于通过调节细胞内乳酸水平来磷酸化 PDH 是必需的。最后,对癌症基因组图谱中肝细胞癌队列的生物信息学分析表明,低 LDHB/LDHA 比值与预后不良有统计学显著相关性。低比值还与糖酵解基因的显著富集相关,与 PDK1 和 2 的表达呈负相关,这表明 LDHB 抑制与 PDK-PDH 轴之间存在密切联系。这些结果表明,LDHB 抑制是一种增强糖酵解的关键机制,通过肝癌进展中的乳酸释放,在维持和传播线粒体功能障碍中起着关键作用。

相似文献

引用本文的文献

10
Lactate: The Mediator of Metabolism and Immunosuppression.乳酸盐:代谢与免疫抑制的中介物。
Front Endocrinol (Lausanne). 2022 Jun 9;13:901495. doi: 10.3389/fendo.2022.901495. eCollection 2022.

本文引用的文献

1
Cancer metabolism: New insights into classic characteristics.癌症代谢:对经典特征的新见解。
Jpn Dent Sci Rev. 2018 Feb;54(1):8-21. doi: 10.1016/j.jdsr.2017.08.003. Epub 2017 Sep 29.
6
Mitochondrial respiratory defects promote the Warburg effect and cancer progression.线粒体呼吸缺陷促进瓦伯格效应和癌症进展。
Mol Cell Oncol. 2015 Dec 10;3(2):e1085120. doi: 10.1080/23723556.2015.1085120. eCollection 2016 Mar.
7
Role of mitochondrial dysfunction in cancer progression.线粒体功能障碍在癌症进展中的作用。
Exp Biol Med (Maywood). 2016 Jun;241(12):1281-95. doi: 10.1177/1535370216641787. Epub 2016 Mar 27.
8
TP53 mutation, mitochondria and cancer.TP53突变、线粒体与癌症。
Curr Opin Genet Dev. 2016 Jun;38:16-22. doi: 10.1016/j.gde.2016.02.007. Epub 2016 Mar 19.
9
Monocarboxylate transporters in the brain and in cancer.大脑和癌症中的单羧酸转运体
Biochim Biophys Acta. 2016 Oct;1863(10):2481-97. doi: 10.1016/j.bbamcr.2016.03.013. Epub 2016 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验