Suppr超能文献

基于可见-近红外透射光谱的离散小波变换优化 Fukumoto 脐橙可溶性固形物含量的遗传算法-偏最小二乘模型。

Optimizing genetic algorithm-partial least squares model of soluble solids content in Fukumoto navel orange based on visible-near-infrared transmittance spectroscopy using discrete wavelet transform.

机构信息

Key Laboratory of Hilly and Mountain Areas of Chongqing, College of Engineering and Technology, Southwest University, Chongqing, China.

出版信息

J Sci Food Agric. 2019 Aug 30;99(11):4898-4903. doi: 10.1002/jsfa.9717. Epub 2019 May 13.

Abstract

BACKGROUND

The thick rind of Fukumoto navel orange is a great barrier to light penetration, which makes it difficult to evaluate the internal quality of Fukumoto navel orange accurately by visible-near-infrared (Vis-NIR) transmittance spectroscopy. The information carried by the transmission spectrum is limited. Thus, the application of genetic algorithm (GA) for variable selection may not reach the expected results, and selected variables may contain redundancy. In this paper, we present the use of discrete wavelet transforms for optimizing a GA-partial least squares (PLS) model based on Vis-NIR transmission spectra of Fukumoto navel orange. Haar, Db, Sym, Coif and Bior wavelets were used to compress the spectral data selected by GA. Then a PLS model was established based on the variables compressed by each wavelet function.

RESULTS

The use of Db4, Sym4, Coif2 and Bior3.5 succeeded in further simplification of the GA-PLS model by reducing the number of variables by 40-44% without decreasing the prediction accuracy. The application of Bior3.5 not only could reduce the number of variables in the GA-PLS model by 40%, but also increase the value of correlation coefficient of prediction by 1% and decrease the value of root mean square error of prediction by 3%.

CONCLUSIONS

The results indicated that the combination of GA and discrete wavelet transforms for variable selection in the internal quality assessment of Fukumoto navel orange by Vis-NIR transmittance spectroscopy was feasible. © 2019 Society of Chemical Industry.

摘要

背景

福冈脐橙果皮较厚,对光的穿透有很大的阻碍,这使得利用可见-近红外(Vis-NIR)透射光谱法很难准确评估福冈脐橙的内部品质。透射光谱所携带的信息有限。因此,遗传算法(GA)的变量选择可能无法达到预期的结果,并且选择的变量可能包含冗余。在本文中,我们提出了一种利用离散小波变换优化基于福冈脐橙可见-近红外透射光谱的 GA-偏最小二乘(PLS)模型的方法。使用 Haar、Db、Sym、Coif 和 Bior 小波对 GA 选择的光谱数据进行压缩。然后,基于每个小波函数压缩的变量建立 PLS 模型。

结果

使用 Db4、Sym4、Coif2 和 Bior3.5 成功地进一步简化了 GA-PLS 模型,将变量数减少了 40-44%,而预测精度没有降低。Bior3.5 的应用不仅可以将 GA-PLS 模型中的变量数减少 40%,还可以将预测相关系数提高 1%,将预测均方根误差降低 3%。

结论

结果表明,GA 与离散小波变换相结合,用于 Vis-NIR 透射光谱法对福冈脐橙内部品质的变量选择是可行的。© 2019 英国化学学会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验