Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States.
Department of Biomedical and Chemical Engineering , Syracuse University , 329 Link Hall , Syracuse , New York 13244 , United States.
ACS Nano. 2019 Apr 23;13(4):4469-4477. doi: 10.1021/acsnano.9b00008. Epub 2019 Apr 3.
Molecular crowding, a ubiquitous feature of the cellular environment, has significant implications in the kinetics and equilibrium of biopolymer interactions. In this study, a single charged polypeptide is exposed to competing forces that drive it into a transmembrane protein pore versus forces that pull it outside. Using single-molecule electrophysiology, we provide compelling experimental evidence that the kinetic details of the polypeptide-pore interactions are substantially affected by high concentrations of less-penetrating polyethylene glycols (PEGs). At a polymer concentration above a critical value, the presence of these neutral macromolecular crowders increases the rate constant of association but decreases the rate constant of dissociation, resulting in a stronger polypeptide-pore interaction. Moreover, a larger-molecular weight PEG exhibits a lower rate constant of association but a higher rate constant of dissociation than those values corresponding to a smaller-molecular weight PEG. These outcomes are in accord with a lower diffusion constant of the polypeptide and higher depletion-attraction forces between the polypeptide and transmembrane protein pore under crowding and confinement conditions.
分子拥挤是细胞环境中普遍存在的特征,它对生物聚合物相互作用的动力学和平衡有重要影响。在这项研究中,我们将单个带电多肽暴露于竞争力之下,这些竞争力将其驱动进入跨膜蛋白孔,或将其拉向外部。通过单分子电生理学,我们提供了令人信服的实验证据,表明多肽-孔相互作用的动力学细节受到高浓度低渗透性聚乙二醇(PEG)的显著影响。在聚合物浓度高于临界值时,这些中性大分子拥挤物的存在会增加缔合的速率常数,但会降低解离的速率常数,从而导致多肽-孔相互作用增强。此外,与分子量较小的 PEG 相比,分子量较大的 PEG 具有较低的缔合速率常数和较高的解离速率常数。这些结果与在拥挤和受限条件下,多肽的扩散常数较低以及多肽与跨膜蛋白孔之间的耗尽-吸引力较高相一致。