Suppr超能文献

通过拓宽吸引盆地和反向蒙特卡罗采样来构建蛋白质结构预测的有效能量函数。

Constructing effective energy functions for protein structure prediction through broadening attraction-basin and reverse Monte Carlo sampling.

机构信息

Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 6, Kexueyuan South Road, Zhongguancun, Beijing, 100190, China.

University of Chinese Academy of Sciences, 19-1, Yuquan Road, Shijingshan, Beijing, 100049, China.

出版信息

BMC Bioinformatics. 2019 Mar 29;20(Suppl 3):135. doi: 10.1186/s12859-019-2652-5.

Abstract

BACKGROUND

The ab initio approaches to protein structure prediction usually employ the Monte Carlo technique to search the structural conformation that has the lowest energy. However, the widely-used energy functions are usually ineffective for conformation search. How to construct an effective energy function remains a challenging task.

RESULTS

Here, we present a framework to construct effective energy functions for protein structure prediction. Unlike existing energy functions only requiring the native structure to be the lowest one, we attempt to maximize the attraction-basin where the native structure lies in the energy landscape. The underlying rationale is that each energy function determines a specific energy landscape together with a native attraction-basin, and the larger the attraction-basin is, the more likely for the Monte Carlo search procedure to find the native structure. Following this rationale, we constructed effective energy functions as follows: i) To explore the native attraction-basin determined by a certain energy function, we performed reverse Monte Carlo sampling starting from the native structure, identifying the structural conformations on the edge of attraction-basin. ii) To broaden the native attraction-basin, we smoothened the edge points of attraction-basin through tuning weights of energy terms, thus acquiring an improved energy function. Our framework alternates the broadening attraction-basin and reverse sampling steps (thus called BARS) until the native attraction-basin is sufficiently large. We present extensive experimental results to show that using the BARS framework, the constructed energy functions could greatly facilitate protein structure prediction in improving the quality of predicted structures and speeding up conformation search.

CONCLUSION

Using the BARS framework, we constructed effective energy functions for protein structure prediction, which could improve the quality of predicted structures and speed up conformation search as well.

摘要

背景

从头开始的蛋白质结构预测方法通常采用蒙特卡罗技术来搜索具有最低能量的结构构象。然而,广泛使用的能量函数通常在构象搜索中效果不佳。如何构建有效的能量函数仍然是一个具有挑战性的任务。

结果

在这里,我们提出了一种构建蛋白质结构预测有效能量函数的框架。与现有的仅要求天然结构为最低结构的能量函数不同,我们试图最大化天然结构所在的能量景观中的吸引盆地。其基本原理是,每个能量函数都与特定的能量景观以及天然吸引盆地一起确定,吸引盆地越大,蒙特卡罗搜索过程找到天然结构的可能性就越大。根据这一原理,我们构建了如下有效的能量函数:i)为了探索特定能量函数所确定的天然吸引盆地,我们从天然结构开始进行反向蒙特卡罗采样,确定吸引盆地边缘的结构构象。ii)为了拓宽天然吸引盆地,我们通过调整能量项的权重来平滑吸引盆地的边缘点,从而获得改进的能量函数。我们的框架交替进行拓宽吸引盆地和反向采样步骤(因此称为 BARS),直到天然吸引盆地足够大。我们提供了广泛的实验结果,表明使用 BARS 框架,构建的能量函数可以极大地促进蛋白质结构预测,提高预测结构的质量并加快构象搜索。

结论

使用 BARS 框架,我们构建了蛋白质结构预测的有效能量函数,这可以提高预测结构的质量并加快构象搜索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f786/6439974/180641c6fbff/12859_2019_2652_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验