Suppr超能文献

AML 发病机制的遗传和表观遗传决定因素。

Genetic and epigenetic determinants of AML pathogenesis.

机构信息

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.

Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY.

出版信息

Semin Hematol. 2019 Apr;56(2):84-89. doi: 10.1053/j.seminhematol.2018.08.001. Epub 2018 Aug 22.

Abstract

Acute myeloid leukemia (AML) was one of the first cancers to be sequenced at the level of the whole genome. Molecular profiling of AML through targeted sequencing panels and cytogenetics has become a mainstay in risk-stratifying AML patients and guiding clinicians toward optimal therapies for their patients. The extensive high-resolution genomic data generated to characterize AML have been instrumental in revealing the tremendous biological complexity of the disease, dictated in part by mutational, clonal, and epigenetic heterogeneity. This is further complicated by the antecedent nonleukemic state of clonal hematopoiesis that nevertheless is associated with an increased risk of developing a hematologic malignancy and with a greater risk of mortality from ischemic cardiovascular disease. Here in this review, we discuss developments in the field of AML biology and therapeutics, with a focus on advances in our understanding of how genetic and epigenetic determinants of AML have influenced prognostication and recent shifts in treatment paradigms, particularly within the context of precision oncology, for this highly complex group of hematologic malignancies.

摘要

急性髓系白血病(AML)是最早在全基因组水平进行测序的癌症之一。通过靶向测序panel 和细胞遗传学对 AML 进行分子谱分析已成为对 AML 患者进行风险分层和指导临床医生为患者选择最佳治疗方法的主要手段。为了对 AML 进行特征描述而生成的广泛的高分辨率基因组数据有助于揭示疾病的巨大生物学复杂性,部分原因是突变、克隆和表观遗传异质性所致。这进一步因克隆性造血的前白血病状态而变得复杂,尽管如此,它仍然与发生血液恶性肿瘤的风险增加以及因缺血性心血管疾病而导致死亡率增加相关。在这篇综述中,我们讨论了 AML 生物学和治疗学领域的进展,重点介绍了我们对 AML 的遗传和表观遗传决定因素如何影响预后以及最近在治疗模式转变方面的进展的理解,特别是在精准肿瘤学方面,因为这是一组高度复杂的血液恶性肿瘤。

相似文献

1
Genetic and epigenetic determinants of AML pathogenesis.
Semin Hematol. 2019 Apr;56(2):84-89. doi: 10.1053/j.seminhematol.2018.08.001. Epub 2018 Aug 22.
2
The evolving molecular genetic landscape in acute myeloid leukaemia.
Curr Opin Hematol. 2013 Mar;20(2):79-85. doi: 10.1097/MOH.0b013e32835d821c.
3
Genetic and epigenetic heterogeneity in acute myeloid leukemia.
Curr Opin Genet Dev. 2016 Feb;36:100-6. doi: 10.1016/j.gde.2016.03.011. Epub 2016 May 7.
4
Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia.
Blood. 2016 Jan 7;127(1):42-52. doi: 10.1182/blood-2015-07-604512. Epub 2015 Dec 10.
5
Clinical developments in epigenetic-directed therapies in acute myeloid leukemia.
Blood Adv. 2020 Mar 10;4(5):970-982. doi: 10.1182/bloodadvances.2019001245.
6
Driver mutations in acute myeloid leukemia.
Curr Opin Hematol. 2020 Mar;27(2):49-57. doi: 10.1097/MOH.0000000000000567.
7
Recent advances in the understanding and treatment of acute myeloid leukemia.
F1000Res. 2018 Aug 6;7. doi: 10.12688/f1000research.14116.1. eCollection 2018.
8
Identifying high-risk adult AML patients: epigenetic and genetic risk factors and their implications for therapy.
Expert Rev Hematol. 2016;9(4):351-60. doi: 10.1586/17474086.2016.1141673. Epub 2016 Feb 12.
9
Epigenomic machinery regulating pediatric AML: Clonal expansion mechanisms, therapies, and future perspectives.
Semin Cancer Biol. 2023 Jul;92:84-101. doi: 10.1016/j.semcancer.2023.03.009. Epub 2023 Mar 31.

引用本文的文献

1
Microbial Crosstalk with Therapy: Pharmacomicrobiomics in AML-One Step Closer to Personalized Medicine.
Biomedicines. 2025 Jul 18;13(7):1761. doi: 10.3390/biomedicines13071761.
2
Network-based analysis and experimental validation of identified natural compounds from Yinchen Wuling San for acute myeloid leukemia.
Front Pharmacol. 2025 May 30;16:1591164. doi: 10.3389/fphar.2025.1591164. eCollection 2025.
3
Enhancing venetoclax efficacy in leukemia through association with HDAC inhibitors.
Cell Death Discov. 2025 Apr 6;11(1):147. doi: 10.1038/s41420-025-02446-4.
4
PSPC1 exerts an oncogenic role in AML by regulating a leukemic transcription program in cooperation with PU.1.
Cell Stem Cell. 2025 Mar 6;32(3):463-478.e6. doi: 10.1016/j.stem.2025.01.010. Epub 2025 Feb 14.
5
Targeting autophagy: polydatin's role in inducing cell death in AML.
Front Pharmacol. 2024 Nov 19;15:1470217. doi: 10.3389/fphar.2024.1470217. eCollection 2024.
7
Epigenetic-based differentiation therapy for Acute Myeloid Leukemia.
Nat Commun. 2024 Jul 2;15(1):5570. doi: 10.1038/s41467-024-49784-y.

本文引用的文献

1
Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations.
Nature. 2018 Jul;559(7712):125-129. doi: 10.1038/s41586-018-0251-7. Epub 2018 Jun 27.
2
Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML.
N Engl J Med. 2018 Jun 21;378(25):2386-2398. doi: 10.1056/NEJMoa1716984. Epub 2018 Jun 2.
3
Molecular Minimal Residual Disease in Acute Myeloid Leukemia.
N Engl J Med. 2018 Mar 29;378(13):1189-1199. doi: 10.1056/NEJMoa1716863.
4
Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies.
Cell Stem Cell. 2018 Feb 1;22(2):157-170. doi: 10.1016/j.stem.2018.01.011.
8
Promoter-bound METTL3 maintains myeloid leukaemia by mA-dependent translation control.
Nature. 2017 Dec 7;552(7683):126-131. doi: 10.1038/nature24678. Epub 2017 Nov 27.
9
Midostaurin in FLT3-Mutated Acute Myeloid Leukemia.
N Engl J Med. 2017 Nov 9;377(19):1903. doi: 10.1056/NEJMc1711340.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验