Suppr超能文献

RNA-Seq 方法可准确描述酵母内含子剪接效率。

RNA-Seq approach for accurate characterization of splicing efficiency of yeast introns.

机构信息

Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa K1N 6N5, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada.

出版信息

Methods. 2020 Apr 1;176:25-33. doi: 10.1016/j.ymeth.2019.03.019. Epub 2019 Mar 26.

Abstract

Introns in different genes, or even different introns within the same gene, often have different splice sites and differ in splicing efficiency (SE). One expects mass-transcribed genes to have introns with higher SE than weakly transcribed genes. However, such a simple expectation cannot be tested directly because variable SE for these genes is often not measured. Mechanistically, SE should depend on signal strength at key splice sites (SS) such as 5'SS, 3'SS and branchpoint site (BPS), i.e., SE = F(5'SS, 3'SS, BPS). However, without SE, we again cannot model how these splice sites contribute to SE. Here I present an RNA-Seq approach to quantify SE for each of the 304 introns in yeast (Saccharomyces cerevisiae) genes, including 24 in the 5'UTR, by measuring 1) number of reads mapped to exon-exon junctions (N) as a proxy for the abundance of spliced form, and 2) number of reads mapped to exon-intron junction (N and N at 5' and 3' ends of intron) as a proxy for the abundance of unspliced form. The total mRNA is N = N + p * N + (1-p) * N, with the simplest p = 0.5 but statistical methods were presented to estimate p from data. An estimated p is needed because N is expected to be smaller than N due to 1) step 1 splicing occurs before step 2 so EI5 is broken before EI3, 2) enrichment of poly(A) mRNA by oligo-dT, and 3) 5' degradation. SE is defined as the proportion (N/N). Application of the method shows that ribosomal protein messages are efficiently and mostly cotranscriptionally spliced. Yeast genes with long introns are also spliced efficiently. HAC1/YFL031W is poorly spliced partly because its splicing involves a nonspliceosome mechanism and partly because Ire1p, which participate in splicing HAC1, is hardly expressed. Many putative yeast genes have low SE, and some splice sites are incorrectly annotated.

摘要

内含子在不同基因中,甚至在同一基因的不同内含子中,通常具有不同的剪接位点,剪接效率(SE)也不同。人们预计大量转录的基因具有比弱转录基因更高的 SE。然而,由于这些基因的可变 SE 通常未被测量,因此不能直接检验这种简单的预期。从机制上讲,SE 应该取决于关键剪接位点(SS)的信号强度,例如 5'SS、3'SS 和分支点(BPS),即 SE=F(5'SS、3'SS、BPS)。然而,如果没有 SE,我们又无法模拟这些剪接位点如何对 SE 做出贡献。在这里,我提出了一种 RNA-Seq 方法来量化酵母(酿酒酵母)基因中 304 个内含子中的每个内含子的 SE,包括 5'UTR 中的 24 个内含子,方法是测量 1)映射到外显子-外显子连接的读段数量(N)作为拼接形式丰度的替代物,以及 2)映射到外显子-内含子连接的读段数量(N 和 N 在内含子的 5'和 3'端)作为未拼接形式丰度的替代物。总 mRNA 是 N=N+p*N+(1-p)*N,最简单的 p=0.5,但也提出了统计方法来从数据中估计 p。需要估计 p,因为由于 1)步骤 1 剪接发生在步骤 2 之前,所以 EI5 在 EI3 之前被打断,2)多聚 A mRNA 的寡聚 dT 富集,以及 3)5'降解,所以 N 预计会小于 N。SE 被定义为比例(N/N)。该方法的应用表明,核糖体蛋白的 mRNA 被高效且主要是共转录地剪接。具有长内含子的酵母基因也能有效地剪接。HAC1/YFL031W 剪接效率低部分是因为它的剪接涉及非核小体机制,部分是因为参与 HAC1 剪接的 Ire1p 几乎不表达。许多假定的酵母基因的 SE 较低,一些剪接位点的注释不正确。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验