Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
DNA Repair (Amst). 2019 May;77:96-108. doi: 10.1016/j.dnarep.2019.03.011. Epub 2019 Mar 22.
DNA double-strand breaks (DSBs) induced by genotoxic agents can cause cell death or contribute to chromosomal instability, a major driving force of cancer. By contrast, Spo11-dependent DSBs formed during meiosis are aimed at generating genetic diversity. In eukaryotes, CtIP and the Mre11 nuclease complex are essential for accurate processing and repair of both unscheduled and programmed DSBs by homologous recombination (HR). Here, we applied bioinformatics and genetic analysis to identify Paramecium tetraurelia CtIP (PtCtIP), the smallest known Sae2/Ctp1/CtIP ortholog, as a key factor for the completion of meiosis and the recovery of viable sexual progeny. Using in vitro assays, we find that purified recombinant PtCtIP preferentially binds to double-stranded DNA substrates but does not contain intrinsic nuclease activity. Moreover, mutation of the evolutionarily conserved C-terminal 'RHR' motif abrogates DNA binding of PtCtIP but not its ability to functionally interact with Mre11. Translating our findings into mammalian cells, we provide evidence that disruption of the 'RHR' motif abrogates accumulation of human CtIP at sites of DSBs. Consequently, cells expressing the DNA binding mutant CtIP are defective in DSB resection and HR. Collectively, our work highlights minimal structural requirements for CtIP protein family members to facilitate the processing of DSBs, thereby maintaining genome stability as well as enabling sexual reproduction.
DNA 双链断裂 (DSB) 是由遗传毒性物质诱导产生的,可能导致细胞死亡或导致染色体不稳定,这是癌症的主要驱动力。相比之下,减数分裂过程中由 Spo11 诱导产生的 DSB 旨在产生遗传多样性。在真核生物中,CtIP 和 Mre11 核酸酶复合物对于通过同源重组 (HR) 对非计划和程序性 DSB 的准确处理和修复至关重要。在这里,我们应用生物信息学和遗传分析来鉴定 Paramecium tetraurelia CtIP(PtCtIP),这是已知的最小 Sae2/Ctp1/CtIP 直系同源物,是完成减数分裂和恢复有活力的有性后代的关键因素。通过体外实验,我们发现纯化的重组 PtCtIP 优先与双链 DNA 底物结合,但不包含内在核酸酶活性。此外,突变进化保守的 C 末端 'RHR' 基序会破坏 PtCtIP 的 DNA 结合,但不会影响其与 Mre11 功能相互作用的能力。将我们的发现转化为哺乳动物细胞,我们提供了证据表明破坏 'RHR' 基序会阻止人 CtIP 在 DSB 位点的积累。因此,表达 DNA 结合突变体 CtIP 的细胞在 DSB 切除和 HR 中存在缺陷。总之,我们的工作强调了 CtIP 蛋白家族成员在促进 DSB 处理方面的最小结构要求,从而维持基因组稳定性并实现有性繁殖。