Suppr超能文献

随机偏微分方程的有效作用量

Effective action for stochastic partial differential equations.

作者信息

Hochberg D, Molina-París C, Pérez-Mercader J, Visser M

机构信息

Laboratorio de Astrofísica Espacial y Física Fundamental, Apartado 50727, 28080 Madrid, Spain.

出版信息

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Dec;60(6 Pt A):6343-60. doi: 10.1103/physreve.60.6343.

Abstract

Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important to realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this "direct approach" is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT.

摘要

随机偏微分方程(SPDEs)是对噪声起重要作用的系统进行建模的基本工具。SPDEs 用于湍流、模式形成以及宇宙本身结构发展的模型。人们相当清楚某些 SPDEs 可以被处理成等同于(非量子)场论,而这些场论与量子场论仍展现出深刻且重要的关系。在本文中,我们系统地扩展这些观点:我们建立一个泛函积分形式体系,并展示如何为任意受任意高斯噪声影响的 SPDEs 提取所有单圈物理量。必须认识到高斯噪声并不意味着场变量经历高斯涨落,并且这些非量子场论是完全相互作用的,这一点极其重要。对单圈的限制并不像可能认为的那么严重:量子场论(QFTs)的经验告诉我们,单圈物理量通常足以对突出问题给出很好的描述。然而,对单圈的限制确实提供了显著的技术优势:因为在单圈时,几乎任何场论都可以使用 zeta 函数技术使其变为有限的,所以我们可以避开 Martin - Siggia - Rose 形式体系(QFT 中使用的 Becchi - Rouet - Stora - Tyutin 形式体系的 SPDE 类似物)中固有的复杂性,而是将注意力集中在仅使用物理场的极简方法上(这种“直接方法”是使用物理场的正则量子化的 SPDE 类似物)。在为特征泛函(配分函数)建立了一般形式体系之后,我们展示如何定义到所有圈的有效作用量,然后专注于单圈有效作用量及其对常场的特殊化:有效势。讨论了 SPDEs 的有效作用量和有效势的物理解释,并且我们表明关键特征从 QFT 延续到了 SPDEs 的情况。一个重要结果是,控制噪声的两点函数的振幅充当圈计数参数,并且在这个 SPDE 背景下是普朗克常数的类似物。我们推导了任意受平移不变高斯噪声影响的 SPDEs 的单圈有效势的一般表达式,并将其与 QFT 的单圈势进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验