Institut für Chemie , Technische Universität Berlin , Sekretariat PC 14 , D-10623 Berlin , Germany.
J Phys Chem B. 2019 Apr 25;123(16):3409-3420. doi: 10.1021/acs.jpcb.9b00617. Epub 2019 Apr 11.
[NiFe] hydrogenases are enzymes that catalyze the splitting of molecular hydrogen according to the reaction H → 2H + 2e. Most of these enzymes are inhibited even by low traces of O. However, a special group of O-tolerant hydrogenases exists. A member of this group is the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha ( ReMBH). The ReMBH harbors an unusual iron sulfur cluster with composition 4Fe3S(6Cys) that is able to undergo structural changes triggering the flow of two electrons to the [NiFe] active site. These electrons promote oxygen reduction at the active site, preventing, in this way, aerobic inactivation of the enzyme. In the superoxidized state, the [4Fe3S] cluster binds to a hydroxyl group that originates from either molecular oxygen or water reaching the site. Both reactions, oxygen reduction to water at the [NiFe]- or [4Fe3S]-centers and oxygen evolution from water at the proximal cluster, require the delivery of protons regulated by a subtle communication mechanism between these metal centers. In this work, we sequentially apply multiscale modeling techniques as quantum mechanical/molecular mechanics methods and classical molecular dynamics simulations to investigate the role of two distinct proton transfer pathways connecting the [NiFe] active site and the [4Fe3S] proximal cluster of ReMBH in the protection mechanism against an oxygen attack. Although the "glutamate" pathway is preferred by protons migrating toward the active site to avoid inactivation by O, the "histidine" pathway plays an essential role in delivering protons for O reduction at the proximal cluster. The results obtained in this work not only provide new pieces to the puzzling catalytic mechanisms governing O-tolerant hydrogenases but also highlight the relevance of dynamics in the proper description of biochemical reactions in general.
[NiFe] 氢化酶是根据反应 H → 2H + 2e 催化分子氢分解的酶。大多数这些酶甚至被痕量 O 抑制。然而,存在一组特殊的耐 O 氢化酶。该组的一个成员是来自 Ralstonia eutropha 的膜结合 [NiFe] 氢化酶(ReMBH)。ReMBH 含有一种不寻常的铁硫簇,组成 4Fe3S(6Cys),能够发生结构变化,促使电子流到 [NiFe] 活性位点。这些电子促进活性位点的氧还原,从而防止酶的有氧失活。在超氧化状态下,[4Fe3S]簇与源自分子氧或到达该位点的水的羟基结合。这两个反应,即在 [NiFe]-或 [4Fe3S]-中心处将氧还原为水,以及在近端簇处从水中释放氧,都需要质子的传递,这由这些金属中心之间的微妙通信机制来调节。在这项工作中,我们依次应用多尺度建模技术,如量子力学/分子力学方法和经典分子动力学模拟,来研究连接 ReMBH 的 [NiFe] 活性位点和 [4Fe3S] 近端簇的两种不同质子传递途径在保护机制中的作用免受氧攻击。尽管向活性位点迁移的质子更倾向于通过“谷氨酸”途径以避免被 O 失活,但“组氨酸”途径在向近端簇传递质子以进行 O 还原方面起着至关重要的作用。这项工作的结果不仅为控制耐 O 氢化酶的催化机制提供了新的线索,而且还强调了动力学在一般生物化学反应的正确描述中的重要性。