Suppr超能文献

来自……的膜结合[NiFe]氢化酶分离大亚基的构象和机械稳定性

Conformational and mechanical stability of the isolated large subunit of membrane-bound [NiFe]-hydrogenase from .

作者信息

Dragelj Jovan, Karafoulidi-Retsou Chara, Katz Sagie, Lenz Oliver, Zebger Ingo, Caserta Giorgio, Sacquin-Mora Sophie, Mroginski Maria Andrea

机构信息

Institut für Chemie, Technische Universität Berlin, Berlin, Germany.

CNRS, UPR, Laboratoire de Biochimie Théorique, Université de Paris Cité, Paris, France.

出版信息

Front Microbiol. 2023 Jan 17;13:1073315. doi: 10.3389/fmicb.2022.1073315. eCollection 2022.

Abstract

Comprising at least a bipartite architecture, the large subunit of [NiFe]-hydrogenase harbors the catalytic nickel-iron site while the small subunit houses an array of electron-transferring Fe-S clusters. Recently, some [NiFe]-hydrogenase large subunits have been isolated showing an intact and redox active catalytic cofactor. In this computational study we have investigated one of these metalloproteins, namely the large subunit HoxG of the membrane-bound hydrogenase from (MBH), targeting its conformational and mechanical stability using molecular modelling and long all-atom Gaussian accelerated molecular dynamics (GaMD). Our simulations predict that isolated HoxG is stable in aqueous solution and preserves a large portion of its mechanical properties, but loses rigidity in regions around the active site, in contrast to the MBH heterodimer. Inspired by biochemical data showing dimerization of the HoxG protein and IR measurements revealing an increased stability of the [NiFe] cofactor in protein preparations with higher dimer content, corresponding simulations of homodimeric forms were also undertaken. While the monomeric subunit contains several flexible regions, our data predicts a regained rigidity in homodimer models. Furthermore, we computed the electrostatic properties of models obtained by enhanced sampling with GaMD, which displays a significant amount of positive charge at the protein surface, especially in solvent-exposed former dimer interfaces. These data offer novel insights on the way the [NiFe] core is protected from de-assembly and provide hints for enzyme anchoring to surfaces, which is essential information for further investigations on these minimal enzymes.

摘要

[NiFe]氢化酶的大亚基至少由两部分结构组成,其中包含催化性的镍铁位点,而小亚基则含有一系列用于电子转移的铁硫簇。最近,一些[NiFe]氢化酶大亚基已被分离出来,显示出完整且具有氧化还原活性的催化辅因子。在这项计算研究中,我们研究了其中一种金属蛋白,即来自嗜盐栖热袍菌(Thermotoga maritima)的膜结合氢化酶(MBH)的大亚基HoxG,使用分子建模和长时间全原子高斯加速分子动力学(GaMD)来研究其构象和机械稳定性。我们的模拟预测,分离出的HoxG在水溶液中是稳定的,并保留了大部分机械性能,但与MBH异二聚体相比,其活性位点周围区域失去了刚性。受显示HoxG蛋白二聚化的生化数据以及红外测量结果的启发,即揭示了在二聚体含量较高的蛋白质制剂中[NiFe]辅因子稳定性增加,我们还对同二聚体形式进行了相应模拟。虽然单体亚基包含几个柔性区域,但我们的数据预测同二聚体模型会重新获得刚性。此外,我们计算了通过GaMD增强采样获得的模型的静电性质,该模型在蛋白质表面显示出大量正电荷,特别是在溶剂暴露的原二聚体界面处。这些数据为保护[NiFe]核心免于拆解的方式提供了新的见解,并为酶锚定到表面提供了线索,这是对这些最小酶进行进一步研究的重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b36/9886862/dbb02ebf1fed/fmicb-13-1073315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验