Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany.
Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2229-E2237. doi: 10.1073/pnas.1712267115. Epub 2018 Feb 20.
[NiFe] hydrogenases catalyze the reversible splitting of H into protons and electrons at a deeply buried active site. The catalytic center can be accessed by gas molecules through a hydrophobic tunnel network. While most [NiFe] hydrogenases are inactivated by O, a small subgroup, including the membrane-bound [NiFe] hydrogenase (MBH) of , is able to overcome aerobic inactivation by catalytic reduction of O to water. This O tolerance relies on a special [4Fe3S] cluster that is capable of releasing two electrons upon O attack. Here, the O accessibility of the MBH gas tunnel network has been probed experimentally using a "soak-and-freeze" derivatization method, accompanied by protein X-ray crystallography and computational studies. This combined approach revealed several sites of O molecules within a hydrophobic tunnel network leading, via two tunnel entrances, to the catalytic center of MBH. The corresponding site occupancies were related to the O concentrations used for MBH crystal derivatization. The examination of the O-derivatized data furthermore uncovered two unexpected structural alterations at the [4Fe3S] cluster, which might be related to the O tolerance of the enzyme.
[NiFe] 氢化酶在深埋的活性部位催化 H 可逆分裂为质子和电子。催化中心可通过疏水隧道网络与气体分子相通。虽然大多数 [NiFe] 氢化酶会被 O 失活,但一小部分,包括 的膜结合 [NiFe] 氢化酶 (MBH),能够通过催化 O 还原为水来克服有氧失活。这种 O 耐受性依赖于一个特殊的 [4Fe3S] 簇,该簇在受到 O 攻击时能够释放两个电子。在这里,使用“浸泡-冻结”衍生化方法,结合蛋白质 X 射线晶体学和计算研究,实验探测了 MBH 气体隧道网络的 O 可及性。这种组合方法揭示了疏水隧道网络中几个 O 分子的位置,这些位置通过两个隧道入口通向 MBH 的催化中心。相应的位置占有率与用于 MBH 晶体衍生化的 O 浓度有关。对 O 衍生化数据的检查还揭示了 [4Fe3S] 簇的两个意想不到的结构改变,这可能与酶的 O 耐受性有关。