Suppr超能文献

在人胶原蛋白水凝胶中,于无血清细胞培养条件下形成三维管状内皮细胞网络。

Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels.

机构信息

Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.

Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.

出版信息

Sci Rep. 2019 Apr 1;9(1):5437. doi: 10.1038/s41598-019-41985-6.

Abstract

Implementation of tubular endothelial cell networks is a prerequisite for 3D tissue engineering of constructs with clinically relevant size as nourishment of cells is challenged by the diffusion limit. In vitro generation of 3D networks is often achieved under conditions using serum containing cell culture medium and/or animal derived matrices. Here, 3D endothelial cell networks were generated by using human umbilical vein endothelial cells (HUVECs) in combination with human adipose tissue derived stromal cells (hASCs) employing human collagen I as hydrogel and decellularized porcine small intestinal submucosa as starter matrix. Matrigel/rat tail collagen I hydrogel was used as control. Resulting constructs were cultivated either in serum-free medium or in endothelial growth medium-2 serving as control. Endothelial cell networks were quantified, tested for lumen formation, and interaction of HUVECs and hASCs. Tube diameter was slightly larger in constructs containing human collagen I compared to Matrigel/rat tail collagen I constructs under serum-free conditions. All other network parameters were mostly similar. Thereby, the feasibility of generating 3D endothelial cell networks under serum-free culture conditions in human collagen I as hydrogel was demonstrated. In summary, the presented achievements pave the way for the generation of clinical applicable constructs.

摘要

管状内皮细胞网络的构建是 3D 组织工程构建具有临床相关尺寸的前提,因为细胞的营养供应受到扩散限制的挑战。体外生成 3D 网络通常是在使用含血清的细胞培养基和/或动物来源基质的条件下实现的。在这里,使用人脐静脉内皮细胞(HUVEC)与人脂肪组织来源的基质细胞(hASC)结合,用人胶原蛋白 I 作为水凝胶和脱细胞猪小肠黏膜下层作为起始基质,生成 3D 内皮细胞网络。使用 Matrigel/大鼠尾胶原 I 水凝胶作为对照。所得构建体在无血清培养基或内皮细胞生长培养基-2 中培养,作为对照。对内皮细胞网络进行定量,检测管腔形成和 HUVEC 和 hASC 的相互作用。在无血清条件下,与人胶原蛋白 I 相比,Matrigel/大鼠尾胶原蛋白 I 构建体中的管状直径稍大。其他所有网络参数大多相似。因此,证明了在人胶原蛋白 I 作为水凝胶的无血清培养条件下生成 3D 内皮细胞网络的可行性。总之,所取得的成果为生成临床适用的构建体铺平了道路。

相似文献

4
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.
5
3D Culture Facilitates VEGF-Stimulated Endothelial Differentiation of Adipose-Derived Stem Cells.
Ann Biomed Eng. 2020 Mar;48(3):1034-1044. doi: 10.1007/s10439-019-02297-y. Epub 2019 Jun 4.
6
Bioactive glass ions for in vitro osteogenesis and microvascularization in gellan gum-collagen hydrogels.
J Biomed Mater Res B Appl Biomater. 2020 May;108(4):1332-1342. doi: 10.1002/jbm.b.34482. Epub 2019 Aug 31.
8
Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting.
Biofabrication. 2020 Feb 19;12(2):025013. doi: 10.1088/1758-5090/ab6a1d.
10
Cell-instructive starPEG-heparin-collagen composite matrices.
Acta Biomater. 2017 Apr 15;53:70-80. doi: 10.1016/j.actbio.2017.01.086. Epub 2017 Feb 16.

引用本文的文献

3
Customized Heparinized Alginate and Collagen Hydrogels for Tunable, Local Delivery of Angiogenic Proteins.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1612-1628. doi: 10.1021/acsbiomaterials.4c01823. Epub 2025 Feb 13.
6
Technique for Rapidly Forming Networks of Microvessel-Like Structures.
Tissue Eng Part C Methods. 2024 May;30(5):229-237. doi: 10.1089/ten.TEC.2023.0318. Epub 2024 Apr 23.
9
Technique for rapidly forming networks of microvessel-like structures.
bioRxiv. 2024 Mar 5:2023.06.22.546165. doi: 10.1101/2023.06.22.546165.
10
Modified ECM-Based Bioink for 3D Printing of Multi-Scale Vascular Networks.
Gels. 2023 Oct 1;9(10):792. doi: 10.3390/gels9100792.

本文引用的文献

2
Recapitulation of Native Dermal Tissue in a Full-Thickness Human Skin Model Using Human Collagens.
Tissue Eng Part A. 2018 Jun;24(11-12):873-881. doi: 10.1089/ten.TEA.2017.0326. Epub 2017 Dec 21.
3
Fetal Bovine Serum (FBS): Past - Present - Future.
ALTEX. 2018;35(1):99-118. doi: 10.14573/altex.1705101. Epub 2017 Aug 9.
4
Recent advances in bioprinting techniques: approaches, applications and future prospects.
J Transl Med. 2016 Sep 20;14:271. doi: 10.1186/s12967-016-1028-0.
6
Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks.
Trends Biotechnol. 2016 Sep;34(9):733-745. doi: 10.1016/j.tibtech.2016.03.002. Epub 2016 Mar 28.
7
Prevascularization in tissue engineering: Current concepts and future directions.
Biotechnol Adv. 2016 Mar-Apr;34(2):112-21. doi: 10.1016/j.biotechadv.2015.12.004. Epub 2015 Dec 7.
8
In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation.
Acta Biomater. 2016 Jan;30:177-187. doi: 10.1016/j.actbio.2015.11.006. Epub 2015 Nov 4.
9
Experimental approaches to vascularisation within tissue engineering constructs.
J Biomater Sci Polym Ed. 2015;26(12):683-734. doi: 10.1080/09205063.2015.1059018.
10
Human vascular model with defined stimulation medium - a characterization study.
ALTEX. 2015;32(2):125-36. doi: 10.14573/altex.1411271. Epub 2015 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验