Wein Svenja, Schemmer Carina, Al Enezy-Ulbrich Miriam Aischa, Jung Shannon Anna, Rütten Stephan, Kühnel Mark, Jonigk Danny, Jahnen-Dechent Wilhelm, Pich Andrij, Neuss Sabine
Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
Gels. 2024 Mar 6;10(3):182. doi: 10.3390/gels10030182.
This study focuses on enhancing controllable fibrin-based hydrogels for tissue engineering, addressing existing weaknesses. By integrating a novel copolymer, we improved the foundation for cell-based angiogenesis with adaptable structural features. Tissue engineering often faces challenges like waste disposal and nutrient supply beyond the 200 µm diffusion limit. Angiogenesis breaks through this limitation, allowing the construction of larger constructs. Our innovative scaffold combination significantly boosts angiogenesis, resulting in longer branches and more capillary network junctions. The copolymer attached to fibrin fibers enables precise adjustment of hydrogel mechanical dynamic properties for specific applications. Our material proves effective for angiogenesis, even under suppression factors like suramin. In our study, we prepared fibrin-based hydrogels with and without the copolymer PVP12400-co-GMA10mol%. Using a co-culture system of human umbilical vein endothelial cells (HUVEC) and mesenchymal stem cells (MSC), we analyzed angiogenetic behavior on and within the modified hydrogels. Capillary-like structures were reproducibly formed on different surfaces, demonstrating the general feasibility of three-dimensional endothelial cell networks in fibrin-based hydrogels. This highlights the biomaterial's suitability for in vitro pre-vascularization of biohybrid implants.
本研究聚焦于增强用于组织工程的可控纤维蛋白基水凝胶,以解决现有弱点。通过整合一种新型共聚物,我们改善了具有适应性结构特征的基于细胞的血管生成基础。组织工程常常面临诸如废物处理和超过200微米扩散极限的营养供应等挑战。血管生成突破了这一限制,使得构建更大的结构体成为可能。我们创新的支架组合显著促进了血管生成,产生了更长的分支和更多的毛细血管网络连接点。附着在纤维蛋白纤维上的共聚物能够针对特定应用精确调节水凝胶的机械动态性能。我们的材料即使在诸如苏拉明等抑制因子存在的情况下,对血管生成也证明是有效的。在我们的研究中,我们制备了含有和不含10摩尔% PVP12400-co-GMA共聚物的纤维蛋白基水凝胶。使用人脐静脉内皮细胞(HUVEC)和间充质干细胞(MSC)的共培养系统,我们分析了在改性水凝胶上和水凝胶内的血管生成行为。在不同表面上可重复形成毛细血管样结构,证明了在纤维蛋白基水凝胶中三维内皮细胞网络的总体可行性。这突出了该生物材料对生物杂交植入物体外预血管化的适用性。