Suppr超能文献

为精准医学设计稳健的单病例研究:模拟研究与设计建议

Designing Robust N-of-1 Studies for Precision Medicine: Simulation Study and Design Recommendations.

作者信息

Percha Bethany, Baskerville Edward B, Johnson Matthew, Dudley Joel T, Zimmerman Noah

机构信息

Icahn School of Medicine at Mount Sinai, New York, NY, United States.

出版信息

J Med Internet Res. 2019 Apr 1;21(4):e12641. doi: 10.2196/12641.

Abstract

BACKGROUND

Recent advances in molecular biology, sensors, and digital medicine have led to an explosion of products and services for high-resolution monitoring of individual health. The N-of-1 study has emerged as an important methodological tool for harnessing these new data sources, enabling researchers to compare the effectiveness of health interventions at the level of a single individual.

OBJECTIVE

N-of-1 studies are susceptible to several design flaws. We developed a model that generates realistic data for N-of-1 studies to enable researchers to optimize study designs in advance.

METHODS

Our stochastic time-series model simulates an N-of-1 study, incorporating all study-relevant effects, such as carryover and wash-in effects, as well as various sources of noise. The model can be used to produce realistic simulated data for a near-infinite number of N-of-1 study designs, treatment profiles, and patient characteristics.

RESULTS

Using simulation, we demonstrate how the number of treatment blocks, ordering of treatments within blocks, duration of each treatment, and sampling frequency affect our ability to detect true differences in treatment efficacy. We provide a set of recommendations for study designs on the basis of treatment, outcomes, and instrument parameters, and make our simulation software publicly available for use by the precision medicine community.

CONCLUSIONS

Simulation can facilitate rapid optimization of N-of-1 study designs and increase the likelihood of study success while minimizing participant burden.

摘要

背景

分子生物学、传感器及数字医学领域的最新进展催生了大量用于高分辨率监测个人健康的产品和服务。单病例研究已成为利用这些新数据源的重要方法工具,使研究人员能够在个体层面比较健康干预措施的有效性。

目的

单病例研究容易出现多种设计缺陷。我们开发了一种可为单病例研究生成逼真数据的模型,以便研究人员提前优化研究设计。

方法

我们的随机时间序列模型模拟单病例研究,纳入所有与研究相关的效应,如残留效应和导入效应,以及各种噪声源。该模型可用于为几乎无限数量的单病例研究设计、治疗方案和患者特征生成逼真的模拟数据。

结果

通过模拟,我们展示了治疗组块数量、组块内治疗顺序、每种治疗的持续时间和采样频率如何影响我们检测治疗效果真实差异的能力。我们根据治疗、结局和仪器参数为研究设计提供了一组建议,并将我们的模拟软件公开提供给精准医学领域使用。

结论

模拟可促进单病例研究设计的快速优化,提高研究成功的可能性,同时将参与者负担降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46be/6462889/56eaabdfa873/jmir_v21i4e12641_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验