Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
Phys Rev E. 2019 Feb;99(2-1):022901. doi: 10.1103/PhysRevE.99.022901.
We study the size-density and size-topology relations in random packings of dry adhesive polydisperse microspheres with Gaussian and lognormal size distributions through a geometric tessellation. We find that the dependence of the neighbor number on the centric particle size is always quasilinear, regardless of the size distribution, size span, or interparticle adhesion. The average local packing fraction as a function of normalized particle size for different size variances is well regressed on the same profile, which increases to larger values as the relative strength of adhesion decreases. The variations of the local coordination number with the particle size converge onto a single curve for all adhesive particles, but gradually transfer to another branch for nonadhesive particles. Such adhesion-induced size-density and size-topology relations are interpreted theoretically with a modified geometrical "granocentric" model, where the model parameters are dependent on a single dimensionless adhesion number. Our findings, together with the modified theory, provide a more unified perspective on the substantial geometry of amorphous polydisperse systems, especially those with fairly loose structures.
我们通过几何细分研究了具有高斯和对数正态尺寸分布的干燥附聚多分散微球随机堆积的尺寸-密度和尺寸-拓扑关系。我们发现,无论尺寸分布、尺寸跨度或颗粒间附着力如何,邻居数量对中心颗粒尺寸的依赖性始终是准线性的。对于不同的尺寸方差,作为归一化颗粒尺寸函数的平均局部堆积分数很好地回归到相同的分布上,随着附着力的相对强度降低而增加到更大的值。对于所有粘性颗粒,局部配位数随颗粒尺寸的变化都收敛到单个曲线,但对于非粘性颗粒则逐渐转移到另一个分支。这种粘附诱导的尺寸-密度和尺寸-拓扑关系通过改进的几何“granocentric”模型进行了理论解释,其中模型参数取决于单个无量纲粘附数。我们的发现,以及改进的理论,为无定形多分散系统的实质性几何形状提供了更统一的视角,特别是那些结构相当松散的系统。