Suppr超能文献

颗粒、乳液、泡沫和生物细胞堆积中的大小-拓扑关系。

Size-topology relations in packings of grains, emulsions, foams, and biological cells.

机构信息

New York University, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012, USA.

出版信息

Phys Rev Lett. 2012 Jun 29;108(26):268001. doi: 10.1103/PhysRevLett.108.268001. Epub 2012 Jun 26.

Abstract

Particulate packings in 3D are used to study the effects of compression and polydispersity on the geometry of the tiling in these systems. We find that the dependence of the neighbor number on cell size is quasilinear in the monodisperse case and becomes nonlinear above a threshold polydispersity, independent of the method of creation of the tiling. These size-topology relations can be described by a simple analytical theory, which quantifies the effects of positional disorder in the monodisperse case and those of size disorder in the polydisperse case and is applicable in two and three dimensions. The theory thus gives a unifying framework for a wide range of amorphous systems, ranging from biological tissues, foams, and bidisperse disks to compressed emulsions and granular matter.

摘要

三维颗粒填充用于研究压缩和多分散性对这些系统中平铺几何形状的影响。我们发现,在单分散情况下,邻居数量与单元尺寸的关系是准线性的,而在超过一定的多分散性阈值后,这种关系变为非线性,与平铺的生成方法无关。这些尺寸-拓扑关系可以用一个简单的分析理论来描述,该理论量化了单分散情况下位置无序和多分散情况下尺寸无序的影响,适用于二维和三维情况。因此,该理论为广泛的无定形系统提供了一个统一的框架,这些系统包括生物组织、泡沫、双分散盘、压缩乳液和颗粒物质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验