Choksi Tej S, Roling Luke T, Streibel Verena, Abild-Pedersen Frank
SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering , Stanford University , Stanford , California 94305 , United States.
SUNCAT Center for Interface Science and Catalysis , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States.
J Phys Chem Lett. 2019 Apr 18;10(8):1852-1859. doi: 10.1021/acs.jpclett.9b00475. Epub 2019 Apr 4.
Bimetallic nanoparticles present a vastly tunable structural and compositional design space rendering them promising materials for catalytic and energy applications. Yet it remains an enduring challenge to efficiently screen candidate alloys with atomic level specificity while explicitly accounting for their inherent stabilities under reaction conditions. Herein, by leveraging correlations between binding energies of metal adsorption sites and metal-adsorbate complexes, we predict adsorption energies of typical catalytic descriptors (OH*, CH*, CH*, and CO*) on bimetallic alloys with site-specific resolution. We demonstrate that our approach predicts adsorption energies on top and bridge sites of bimetallic nanoparticles having generic morphologies and chemical environments with errors between 0.09 and 0.18 eV. By forging a link between the inherent stability of an alloy and the adsorption properties of catalytic descriptors, we can now identify active site motifs in nanoalloys that possess targeted catalytic descriptor values while being thermodynamically stable under working conditions.
双金属纳米颗粒具有极大的可调节结构和成分设计空间,使其成为催化和能源应用中有前景的材料。然而,在明确考虑其在反应条件下的固有稳定性的同时,以原子水平的特异性有效筛选候选合金仍然是一个长期存在的挑战。在此,通过利用金属吸附位点与金属 - 吸附物络合物结合能之间的相关性,我们以位点特异性分辨率预测了典型催化描述符(OH*、CH*、CH* 和 CO*)在双金属合金上的吸附能。我们证明,我们的方法预测了具有一般形态和化学环境的双金属纳米颗粒顶部和桥位的吸附能,误差在0.09至0.18电子伏特之间。通过建立合金固有稳定性与催化描述符吸附特性之间的联系,我们现在可以识别纳米合金中的活性位点基序,这些基序具有目标催化描述符值,同时在工作条件下具有热力学稳定性。