Suppr超能文献

GWAS 位点的通路分析确定了新的药物靶点和再利用机会。

Pathway analysis of GWAS loci identifies novel drug targets and repurposing opportunities.

机构信息

Computational Biology, GSK R&D, Collegeville, PA, USA.

Computational Biology, GSK R&D, Collegeville, PA, USA.

出版信息

Drug Discov Today. 2019 Jun;24(6):1232-1236. doi: 10.1016/j.drudis.2019.03.024. Epub 2019 Mar 29.

Abstract

Genome-wide association studies (GWAS) have made considerable progress and there is emerging evidence that genetics-based targets can lead to 28% more launched drugs. We analyzed 1589 GWAS across 1456 pathways to translate these often imprecise genetic loci into therapeutic hypotheses for 182 diseases. These pathway-based genetic targets were validated by testing whether current drug targets were enriched in the pathway space for the same indication. Remarkably, 30% of diseases had significantly more targets in these pathways than expected by chance; the comparable number for GWAS alone (without pathway analysis) was zero. This study shows that a systematic global pathway analysis can translate genetic findings into therapeutic hypotheses for both new drug discovery and repositioning opportunities for current drugs.

摘要

全基因组关联研究(GWAS)已经取得了相当大的进展,有新的证据表明,基于遗传学的靶点可以使新上市药物增加 28%。我们分析了 1456 条途径中的 1589 个 GWAS,将这些通常不精确的遗传基因座转化为 182 种疾病的治疗假说。通过测试当前药物靶点是否在相同适应症的途径空间中富集,验证了基于途径的遗传靶点。值得注意的是,30%的疾病在这些途径中有比预期更多的靶点;仅 GWAS(不进行途径分析)的相应数字为零。这项研究表明,系统的全球途径分析可以将遗传发现转化为治疗假说,既为新药发现提供了机会,也为现有药物的重新定位提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验