Suppr超能文献

大数据系统的无线传感器网络。

Wireless Sensor Networks for Big Data Systems.

机构信息

Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea.

College of Technological Innovation, Zayed University, Abu Dhabi 144534, UAE.

出版信息

Sensors (Basel). 2019 Apr 1;19(7):1565. doi: 10.3390/s19071565.

Abstract

Before discovering meaningful knowledge from big data systems, it is first necessary to build a data-gathering infrastructure. Among many feasible data sources, wireless sensor networks (WSNs) are rich big data sources: a large amount of data is generated by various sensor nodes in large-scale networks. However, unlike typical wireless networks, WSNs have serious deficiencies in terms of data reliability and communication owing to the limited capabilities of the nodes. Moreover, a considerable amount of sensed data are of no interest, meaningless, and redundant when a large number of sensor nodes is densely deployed. Many studies address the existing problems and propose methods to overcome the limitations when constructing big data systems with WSN. However, a published paper that provides deep insight into this research area remains lacking. To address this gap in the literature, we present a comprehensive survey that investigates state-of-the-art research work on introducing WSN in big data systems. Potential applications and technical challenges of networks and infrastructure are presented and explained in accordance with the research areas and objectives. Finally, open issues are presented to discuss promising directions for further research.

摘要

在从大数据系统中发现有意义的知识之前,首先需要构建一个数据采集基础设施。在许多可行的数据源中,无线传感器网络(WSN)是丰富的大数据源:大量数据由大规模网络中的各种传感器节点生成。然而,与典型的无线网络不同,由于节点的能力有限,WSN 在数据可靠性和通信方面存在严重的缺陷。此外,当大量传感器节点密集部署时,大量的感知数据是无兴趣、无意义和冗余的。许多研究都针对现有问题提出了方法,以克服在使用 WSN 构建大数据系统时的局限性。然而,对于这个研究领域,仍然缺乏一篇深入探讨的已发表论文。为了解决文献中的这一空白,我们进行了一项全面的调查,研究了将 WSN 引入大数据系统的最新研究工作。根据研究领域和目标,介绍和解释了网络和基础设施的潜在应用和技术挑战。最后,提出了开放性问题,以讨论进一步研究的有前途的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91d0/6480280/d1e04f060deb/sensors-19-01565-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验