Suppr超能文献

大数据在大规模无线传感器网络中的采集。

Big Data Collection in Large-Scale Wireless Sensor Networks.

机构信息

LaRI Lab, University of Maroua, P.O. Box 814 Maroua, Cameroon.

Faculty of Exact and Applied Sciences, University of Moundou, P.O. Box 206 Moundou, Chad.

出版信息

Sensors (Basel). 2018 Dec 18;18(12):4474. doi: 10.3390/s18124474.

Abstract

Data collection is one of the main operations performed in Wireless Sensor Networks (WSNs). Even if several interesting approaches on data collection have been proposed during the last decade, it remains a research focus in full swing with a number of important challenges. Indeed, the continuous reduction in sensor size and cost, the variety of sensors available on the market, and the tremendous advances in wireless communication technology have potentially broadened the impact of WSNs. The range of application of WSNs now extends from health to the military field through home automation, environmental monitoring and tracking, as well as other areas of human activity. Moreover, the expansion of the Internet of Things (IoT) has resulted in an important amount of heterogeneous data that are produced at an exponential rate. Furthermore, these data are of interest to both industry and in research. This fact makes their collection and analysis imperative for many purposes. In view of the characteristics of these data, we believe that very large-scale and heterogeneous WSNs can be very useful for collecting and processing these Big Data. However, the scaling up of WSNs presents several challenges that are of interest in both network architecture to be proposed, and the design of data-routing protocols. This paper reviews the background and state of the art of Big Data collection in Large-Scale WSNs (LS-WSNs), compares and discusses on challenges of Big Data collection in LS-WSNs, and proposes possible directions for the future.

摘要

数据采集是无线传感器网络(WSNs)中的主要操作之一。尽管在过去十年中已经提出了几种有趣的数据采集方法,但它仍然是一个研究热点,存在许多重要的挑战。事实上,传感器尺寸和成本的不断降低、市场上可用传感器的多样性以及无线通信技术的巨大进步,可能扩大了 WSNs 的影响。WSNs 的应用范围现已从健康领域扩展到军事领域,涵盖家庭自动化、环境监测和跟踪以及其他人类活动领域。此外,物联网(IoT)的扩展导致了大量以指数级速度产生的异构数据。此外,这些数据对工业和研究都有兴趣。这一事实使得它们的收集和分析对于许多目的都是必要的。鉴于这些数据的特点,我们认为非常大规模和异构的 WSNs 非常适合用于收集和处理这些大数据。然而,WSNs 的扩展带来了一些挑战,这些挑战在拟议的网络架构和数据路由协议的设计中都很重要。本文回顾了大规模 WSNs(LS-WSNs)中大数据采集的背景和现状,比较和讨论了 LS-WSNs 中大数据采集的挑战,并提出了未来可能的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3355/6308481/5572bea9779b/sensors-18-04474-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验