Suppr超能文献

Trim33 对于前心血球中胚层的适当发育是必需的。

Trim33 is required for appropriate development of pre-cardiogenic mesoderm.

机构信息

Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.

Center for Bioinformatics, School of Information Science and Engineering, Central South University, Changsha, Hunan, 410083, PR China.

出版信息

Dev Biol. 2019 Jun 15;450(2):101-114. doi: 10.1016/j.ydbio.2019.03.018. Epub 2019 Mar 30.

Abstract

Congenital cardiac malformations are among the most common birth defects in humans. Here we show that Trim33, a member of the Tif1 subfamily of tripartite domain containing transcriptional cofactors, is required for appropriate differentiation of the pre-cardiogenic mesoderm during a narrow time window in late gastrulation. While mesoderm-specific Trim33 mutants did not display noticeable phenotypes, epiblast-specific Trim33 mutant embryos developed ventricular septal defects, showed sparse trabeculation and abnormally thin compact myocardium, and died as a result of cardiac failure during late gestation. Differentiating embryoid bodies deficient in Trim33 showed an enrichment of gene sets associated with cardiac differentiation and contractility, while the total number of cardiac precursor cells was reduced. Concordantly, cardiac progenitor cell proliferation was reduced in Trim33-deficient embryos. ChIP-Seq performed using antibodies against Trim33 in differentiating embryoid bodies revealed more than 4000 peaks, which were significantly enriched close to genes implicated in stem cell maintenance and mesoderm development. Nearly half of the Trim33 peaks overlapped with binding sites of the Ctcf insulator protein. Our results suggest that Trim33 is required for appropriate differentiation of precardiogenic mesoderm during late gastrulation and that it will likely mediate some of its functions via multi-protein complexes, many of which include the chromatin architectural and insulator protein Ctcf.

摘要

先天性心脏畸形是人类中最常见的出生缺陷之一。在这里,我们表明 Trim33 是三部分结构域包含转录共因子 Tif1 亚家族的成员,它是在原肠胚晚期的一个狭窄时间窗口内,前心源性中胚层适当分化所必需的。虽然中胚层特异性 Trim33 突变体没有表现出明显的表型,但外胚层特异性 Trim33 突变体胚胎发育出室间隔缺损,表现出稀疏的小梁化和异常薄的致密心肌,并由于晚期妊娠期间的心力衰竭而死亡。缺乏 Trim33 的分化胚状体显示出与心脏分化和收缩性相关的基因集的富集,而心脏前体细胞的总数减少。一致地,Trim33 缺陷胚胎中的心脏祖细胞增殖减少。在分化的胚状体中使用抗 Trim33 抗体进行 ChIP-Seq 揭示了超过 4000 个峰,这些峰显著富集在与干细胞维持和中胚层发育相关的基因附近。近一半的 Trim33 峰与 Ctcf 绝缘子蛋白的结合位点重叠。我们的结果表明,Trim33 是原肠胚晚期前心源性中胚层适当分化所必需的,它可能通过多蛋白复合物来介导其部分功能,其中许多复合物包括染色质结构和绝缘子蛋白 Ctcf。

相似文献

1
Trim33 is required for appropriate development of pre-cardiogenic mesoderm.
Dev Biol. 2019 Jun 15;450(2):101-114. doi: 10.1016/j.ydbio.2019.03.018. Epub 2019 Mar 30.
2
Trim33 regulates early maturation of mouse embryoid bodies in vitro.
Biochem Biophys Rep. 2017 Oct 18;12:185-192. doi: 10.1016/j.bbrep.2017.10.002. eCollection 2017 Dec.
3
H3K18ac Primes Mesendodermal Differentiation upon Nodal Signaling.
Stem Cell Reports. 2019 Oct 8;13(4):642-656. doi: 10.1016/j.stemcr.2019.08.016. Epub 2019 Sep 26.
5
Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development.
Circ Res. 2003 Sep 5;93(5):414-20. doi: 10.1161/01.RES.0000089460.12061.E1. Epub 2003 Jul 31.
6
Generation of mice with a conditional allele for Trim33.
Genesis. 2008 Jun;46(6):329-33. doi: 10.1002/dvg.20401.
8
Role of TRIM33 in Wnt signaling during mesendoderm differentiation.
Sci China Life Sci. 2017 Oct;60(10):1142-1149. doi: 10.1007/s11427-017-9129-3. Epub 2017 Aug 24.
10
Second heart field cardiac progenitor cells in the early mouse embryo.
Biochim Biophys Acta. 2013 Apr;1833(4):795-8. doi: 10.1016/j.bbamcr.2012.10.003. Epub 2012 Oct 7.

引用本文的文献

1
Three-dimensional genome structure and function.
MedComm (2020). 2023 Jul 8;4(4):e326. doi: 10.1002/mco2.326. eCollection 2023 Aug.
2
Correlations of expression of nuclear and mitochondrial genes in triploid fish.
G3 (Bethesda). 2022 Aug 25;12(9). doi: 10.1093/g3journal/jkac197.
3
Three-dimensional chromatin organization in cardiac development and disease.
J Mol Cell Cardiol. 2021 Feb;151:89-105. doi: 10.1016/j.yjmcc.2020.11.008. Epub 2020 Nov 24.
4
A genetic variant controls interferon-β gene expression in human myeloid cells by preventing C/EBP-β binding on a conserved enhancer.
PLoS Genet. 2020 Nov 4;16(11):e1009090. doi: 10.1371/journal.pgen.1009090. eCollection 2020 Nov.

本文引用的文献

1
Trim33 mediates the proinflammatory function of Th17 cells.
J Exp Med. 2018 Jul 2;215(7):1853-1868. doi: 10.1084/jem.20170779. Epub 2018 Jun 21.
2
Recent advances in managing septal defects: ventricular septal defects and atrioventricular septal defects.
F1000Res. 2018 Apr 26;7. doi: 10.12688/f1000research.14102.1. eCollection 2018.
3
Developing in 3D: the role of CTCF in cell differentiation.
Development. 2018 Mar 22;145(6):dev137729. doi: 10.1242/dev.137729.
4
Trim33 regulates early maturation of mouse embryoid bodies in vitro.
Biochem Biophys Rep. 2017 Oct 18;12:185-192. doi: 10.1016/j.bbrep.2017.10.002. eCollection 2017 Dec.
5
CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.
PLoS Genet. 2017 Aug 28;13(8):e1006985. doi: 10.1371/journal.pgen.1006985. eCollection 2017 Aug.
6
High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.
Circulation. 2017 Oct 24;136(17):1613-1625. doi: 10.1161/CIRCULATIONAHA.117.029430. Epub 2017 Aug 11.
7
Id genes are essential for early heart formation.
Genes Dev. 2017 Jul 1;31(13):1325-1338. doi: 10.1101/gad.300400.117. Epub 2017 Aug 9.
10
Co-repressor CBFA2T2 regulates pluripotency and germline development.
Nature. 2016 Jun 16;534(7607):387-90. doi: 10.1038/nature18004. Epub 2016 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验