Suppr超能文献

使用机器学习方法预测腰椎管狭窄症择期手术后的出院安置。

Predicting discharge placement after elective surgery for lumbar spinal stenosis using machine learning methods.

机构信息

UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.

Massachusetts General Hospital - Harvard Medical School, Boston, MA, USA.

出版信息

Eur Spine J. 2019 Jun;28(6):1433-1440. doi: 10.1007/s00586-019-05928-z. Epub 2019 Apr 2.

Abstract

PURPOSE

An excessive amount of total hospitalization is caused by delays due to patients waiting to be placed in a rehabilitation facility or skilled nursing facility (RF/SNF). An accurate preoperative prediction of who would need a RF/SNF place after surgery could reduce costs and allow more efficient organizational planning. We aimed to develop a machine learning algorithm that predicts non-home discharge after elective surgery for lumbar spinal stenosis.

METHODS

We used the American College of Surgeons National Surgical Quality Improvement Program to select patient that underwent elective surgery for lumbar spinal stenosis between 2009 and 2016. The primary outcome measure for the algorithm was non-home discharge. Four machine learning algorithms were developed to predict non-home discharge. Performance of the algorithms was measured with discrimination, calibration, and an overall performance score.

RESULTS

We included 28,600 patients with a median age of 67 (interquartile range 58-74). The non-home discharge rate was 18.2%. Our final model consisted of the following variables: age, sex, body mass index, diabetes, functional status, ASA class, level, fusion, preoperative hematocrit, and preoperative serum creatinine. The neural network was the best model based on discrimination (c-statistic = 0.751), calibration (slope = 0.933; intercept = 0.037), and overall performance (Brier score = 0.131).

CONCLUSIONS

A machine learning algorithm is able to predict discharge placement after surgery for lumbar spinal stenosis with both good discrimination and calibration. Implementing this type of algorithm in clinical practice could avert risks associated with delayed discharge and lower costs. These slides can be retrieved under Electronic Supplementary Material.

摘要

目的

由于患者等待安置在康复设施或熟练护理设施(RF/SNF)而导致总住院时间过长。准确预测手术后哪些患者需要 RF/SNF 场所,可以降低成本并允许更有效的组织规划。我们旨在开发一种机器学习算法,以预测腰椎椎管狭窄症择期手术后的非家庭出院。

方法

我们使用美国外科医师学院国家手术质量改进计划(American College of Surgeons National Surgical Quality Improvement Program),选择 2009 年至 2016 年间接受腰椎椎管狭窄症择期手术的患者。该算法的主要结局指标为非家庭出院。开发了四种机器学习算法来预测非家庭出院。通过区分度、校准和总体性能评分来衡量算法的性能。

结果

我们纳入了 28600 名中位年龄为 67 岁(四分位间距 58-74 岁)的患者。非家庭出院率为 18.2%。我们的最终模型包括以下变量:年龄、性别、体重指数、糖尿病、功能状态、ASA 分级、手术水平、融合、术前血细胞比容和术前血清肌酐。神经网络是基于区分度(c 统计量=0.751)、校准(斜率=0.933;截距=0.037)和总体性能(Brier 评分=0.131)的最佳模型。

结论

机器学习算法能够预测腰椎椎管狭窄症手术后的出院安置,具有良好的区分度和校准度。在临床实践中实施这种类型的算法可以避免与延迟出院相关的风险并降低成本。这些幻灯片可以在电子补充材料中检索到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验