Petrov Tatjana
Department of Computer and Information Sciences, University of Konstanz, Konstanz, Germany.
Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
Methods Mol Biol. 2019;1945:297-313. doi: 10.1007/978-1-4939-9102-0_14.
Rule-based modelling allows to represent molecular interactions in a compact and natural way. The underlying molecular dynamics, by the laws of stochastic chemical kinetics, behaves as a continuous-time Markov chain. However, this Markov chain enumerates all possible reaction mixtures, rendering the analysis of the chain computationally demanding and often prohibitive in practice. We here describe how it is possible to efficiently find a smaller, aggregate chain, which preserves certain properties of the original one. Formal methods and lumpability notions are used to define algorithms for automated and efficient construction of such smaller chains (without ever constructing the original ones). We here illustrate the method on an example and we discuss the applicability of the method in the context of modelling large signaling pathways.
基于规则的建模允许以紧凑和自然的方式表示分子相互作用。根据随机化学动力学定律,潜在的分子动力学表现为连续时间马尔可夫链。然而,这个马尔可夫链枚举了所有可能的反应混合物,使得对该链的分析在计算上要求很高,并且在实践中常常是不可行的。我们在此描述如何能够有效地找到一个更小的聚合链,该链保留了原始链的某些属性。形式化方法和可聚合性概念被用于定义自动且高效地构建此类较小链的算法(无需构建原始链)。我们在此通过一个示例来说明该方法,并讨论该方法在大型信号通路建模背景下的适用性。