Siday Thomas, Vabishchevich Polina P, Hale Lucy, Harris Charles Thomas, Luk Ting Shan, Reno John L, Brener Igal, Mitrofanov Oleg
Electronic and Electrical Engineering , University College London , London , WC1E 7JE United Kingdom.
Center for Integrated Nanotechnologies , Sandia National Laboratories , Albuquerque , New Mexico 87123 , United States.
Nano Lett. 2019 May 8;19(5):2888-2896. doi: 10.1021/acs.nanolett.8b05118. Epub 2019 Apr 17.
Terahertz (THz) photoconductive devices are used for generation, detection, and modulation of THz waves, and they rely on the ability to switch electrical conductivity on a subpicosecond time scale using optical pulses. However, fast and efficient conductivity switching with high contrast has been a challenge, because the majority of photoexcited charge carriers in the switch do not contribute to the photocurrent due to fast recombination. Here, we improve efficiency of electrical conductivity switching using a network of electrically connected nanoscale GaAs resonators, which form a perfectly absorbing photoconductive metasurface. We achieve perfect absorption without incorporating metallic elements, by breaking the symmetry of cubic Mie resonators. As a result, the metasurface can be switched between conductive and resistive states with extremely high contrast using an unprecedentedly low level of optical excitation. We integrate this metasurface with a THz antenna to produce an efficient photoconductive THz detector. The perfectly absorbing photoconductive metasurface opens paths for developing a wide range of efficient optoelectronic devices, where required optical and electronic properties are achieved through nanostructuring the resonator network.
太赫兹(THz)光电导器件用于太赫兹波的产生、检测和调制,它们依赖于利用光脉冲在亚皮秒时间尺度上切换电导率的能力。然而,实现具有高对比度的快速高效电导率切换一直是一个挑战,因为开关中大多数光激发电荷载流子由于快速复合而对光电流没有贡献。在此,我们使用电连接的纳米级砷化镓谐振器网络提高电导率切换效率,该网络形成了一个完美吸收的光电导超表面。通过打破立方米氏谐振器的对称性,我们在不引入金属元素的情况下实现了完美吸收。结果,该超表面可以使用前所未有的低水平光激发在导电和电阻状态之间以极高的对比度进行切换。我们将此超表面与太赫兹天线集成,以制造出高效的光电导太赫兹探测器。这种完美吸收的光电导超表面为开发各种高效光电器件开辟了道路,在这些器件中,所需的光学和电子特性是通过对谐振器网络进行纳米结构化来实现的。