Suppr超能文献

基于光学共振介电纳米盘的高效近红外探测器

Highly Efficient Near-Infrared Detector Based on Optically Resonant Dielectric Nanodisks.

作者信息

Masoudian Saadabad Reza, Pauly Christian, Herschbach Norbert, Neshev Dragomir N, Hattori Haroldo T, Miroshnichenko Andrey E

机构信息

School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia.

IEE S.A., Bissen L-7795, Luxembourg.

出版信息

Nanomaterials (Basel). 2021 Feb 8;11(2):428. doi: 10.3390/nano11020428.

Abstract

Fast detection of near-infrared (NIR) photons with high responsivity remains a challenge for photodetectors. Germanium (Ge) photodetectors are widely used for near-infrared wavelengths but suffer from a trade-off between the speed of photodetection and quantum efficiency (or responsivity). To realize a high-speed detector with high quantum efficiency, a small-sized photodetector efficiently absorbing light is required. In this paper, we suggest a realization of a dielectric metasurface made of an array of subwavelength germanium PIN photodetectors. Due to the subwavelength size of each pixel, a high-speed photodetector with a bandwidth of 65 GHz has been achieved. At the same time, high quantum efficiency for near-infrared illumination can be obtained by the engineering of optical resonant modes to localize optical energy inside the intrinsic Ge disks. Furthermore, small junction capacitance and the possibility of zero/low bias operation have been shown. Our results show that all-dielectric metasurfaces can improve the performance of photodetectors.

摘要

对于光电探测器而言,快速检测具有高响应度的近红外(NIR)光子仍然是一项挑战。锗(Ge)光电探测器广泛应用于近红外波长,但在光电探测速度和量子效率(或响应度)之间存在权衡。为了实现具有高量子效率的高速探测器,需要一种能有效吸收光的小型光电探测器。在本文中,我们提出了一种由亚波长锗PIN光电探测器阵列构成的介电超表面的实现方案。由于每个像素的亚波长尺寸,已实现了带宽为65 GHz的高速光电探测器。同时,通过设计光学谐振模式将光能局域在本征锗盘内部,可获得近红外照明下的高量子效率。此外,还展示了小的结电容以及零偏置/低偏置工作的可能性。我们的结果表明,全介质超表面可以提高光电探测器的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d77/7914410/1bb48f404928/nanomaterials-11-00428-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验