Suppr超能文献

在巴西南部的初级保健机构开发和验证患者失约预测模型。

Development and validation of a patient no-show predictive model at a primary care setting in Southern Brazil.

机构信息

Serviço de Saúde Comunitária-Grupo Hospitalar Conceição, Porto Alegre, Brazil.

Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

出版信息

PLoS One. 2019 Apr 4;14(4):e0214869. doi: 10.1371/journal.pone.0214869. eCollection 2019.

Abstract

Patient no-show is a prevalent problem in health care services leading to inefficient resources allocation and limited access to care. This study aims to develop and validate a patient no-show predictive model based on empirical data. A retrospective study was performed using scheduled appointments between 2011 and 2014 from a Brazilian public primary care setting. Fifty percent of the dataset was randomly assigned to model development, and 50% was assigned to validation. Predictive models were developed using stepwise naïve and mixed-effect logistic regression along with the Akaike Information Criteria to select the best model. The area under the ROC curve (AUC) was used to assess the best model performance. Of the 57,586 scheduled appointments in the period, 70.7% (n = 40,740) were evaluated including 5,637 patients. The prevalence of no-show was 13.0% (n = 5,282). The best model presented an AUC of 80.9% (95% CI 80.1-81.7). The most important predictors were previous attendance and same-day appointments. The best model developed from data already available in the scheduling system, had a good performance to predict patient no-show. It is expected the model to be helpful to overbooking decision in the scheduling system. Further investigation is needed to explore the effectiveness of using this model in terms of improving service performance and its impact on quality of care compared to the usual practice.

摘要

患者失约是医疗服务中普遍存在的问题,导致资源配置效率低下,获得医疗服务的机会受限。本研究旨在基于实证数据开发和验证一种患者失约预测模型。采用巴西公立初级保健机构 2011 年至 2014 年期间的预约数据进行回顾性研究。将数据集的 50%随机分配用于模型开发,50%用于验证。使用逐步朴素和混合效应逻辑回归以及赤池信息量准则选择最佳模型来开发预测模型。使用 ROC 曲线下面积 (AUC) 评估最佳模型的性能。在该期间的 57586 次预约中,70.7%(n=40740)进行了评估,包括 5637 名患者。失约率为 13.0%(n=5282)。最佳模型的 AUC 为 80.9%(95%CI 80.1-81.7)。最重要的预测因素是以往就诊和当天预约。从调度系统中已有数据开发的最佳模型,对预测患者失约具有良好的性能。预计该模型有助于调度系统中的超额预订决策。需要进一步研究,以探讨在提高服务绩效方面使用该模型的有效性及其与常规实践相比对医疗质量的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d83/6448862/258725b14ddf/pone.0214869.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验