Department of Ophthalmology, Casey Eye Institute, and.
Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.
AMIA Annu Symp Proc. 2021 Jan 25;2020:293-302. eCollection 2020.
Patient "no-shows" are missed appointments resulting in clinical inefficiencies, revenue loss, and discontinuity of care. Using secondary electronic health record (EHR) data, we used machine learning to predict patient no-shows in follow-up and new patient visits in pediatric ophthalmology and to evaluate features for importance. The best model, XGBoost, had an area under the receiver operating characteristics curve (AUC) score of 0.90 for predicting no-shows in follow-up visits. The key findings from this study are: (1) secondary use of EHR data can be used to build datasets for predictive modeling and successfully predict patient no-shows in pediatric ophthalmology, (2) models predicting no-shows for follow-up visits are more accurate than those for new patient visits, and (3) the performance of predictive models is more robust in predicting no-shows compared to individual important features. We hope these models will be used for more effective interventions to mitigate the impact ofpatient no-shows.
患者“失约”是指未按预约就诊,导致临床效率低下、收入损失和医疗服务中断。本研究使用二级电子健康记录 (EHR) 数据,通过机器学习预测小儿眼科随访和新患者就诊中的患者失约情况,并评估特征的重要性。最佳模型 XGBoost 预测随访失约的受试者工作特征曲线下面积 (AUC) 评分为 0.90。本研究的主要发现为:(1)EHR 数据的二次利用可用于构建预测模型数据集,并成功预测小儿眼科患者的失约情况;(2)预测随访失约的模型比预测新患者就诊失约的模型更准确;(3)与单个重要特征相比,预测模型在预测失约方面的性能更稳健。我们希望这些模型将用于更有效的干预措施,以减轻患者失约的影响。