Suppr超能文献

机器学习在预测学术儿科眼科诊所患者爽约中的应用。

Application of Machine Learning to Predict Patient No-Shows in an Academic Pediatric Ophthalmology Clinic.

机构信息

Department of Ophthalmology, Casey Eye Institute, and.

Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:293-302. eCollection 2020.

Abstract

Patient "no-shows" are missed appointments resulting in clinical inefficiencies, revenue loss, and discontinuity of care. Using secondary electronic health record (EHR) data, we used machine learning to predict patient no-shows in follow-up and new patient visits in pediatric ophthalmology and to evaluate features for importance. The best model, XGBoost, had an area under the receiver operating characteristics curve (AUC) score of 0.90 for predicting no-shows in follow-up visits. The key findings from this study are: (1) secondary use of EHR data can be used to build datasets for predictive modeling and successfully predict patient no-shows in pediatric ophthalmology, (2) models predicting no-shows for follow-up visits are more accurate than those for new patient visits, and (3) the performance of predictive models is more robust in predicting no-shows compared to individual important features. We hope these models will be used for more effective interventions to mitigate the impact ofpatient no-shows.

摘要

患者“失约”是指未按预约就诊,导致临床效率低下、收入损失和医疗服务中断。本研究使用二级电子健康记录 (EHR) 数据,通过机器学习预测小儿眼科随访和新患者就诊中的患者失约情况,并评估特征的重要性。最佳模型 XGBoost 预测随访失约的受试者工作特征曲线下面积 (AUC) 评分为 0.90。本研究的主要发现为:(1)EHR 数据的二次利用可用于构建预测模型数据集,并成功预测小儿眼科患者的失约情况;(2)预测随访失约的模型比预测新患者就诊失约的模型更准确;(3)与单个重要特征相比,预测模型在预测失约方面的性能更稳健。我们希望这些模型将用于更有效的干预措施,以减轻患者失约的影响。

相似文献

本文引用的文献

3
Machine learning for identification of surgeries with high risks of cancellation.用于识别高取消风险手术的机器学习。
Health Informatics J. 2020 Mar;26(1):141-155. doi: 10.1177/1460458218813602. Epub 2018 Dec 5.
4
Data Analytics and Modeling for Appointment No-show in Community Health Centers.社区卫生中心预约未到诊的数据分析与建模
J Prim Care Community Health. 2018 Jan-Dec;9:2150132718811692. doi: 10.1177/2150132718811692.
6
No-shows in appointment scheduling - a systematic literature review.失约于预约安排 - 系统文献回顾。
Health Policy. 2018 Apr;122(4):412-421. doi: 10.1016/j.healthpol.2018.02.002. Epub 2018 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验