Suppr超能文献

用于钻孔参数优化的多目标细胞粒子群优化算法与径向基函数

Multi-objective cellular particle swarm optimization and RBF for drilling parameters optimization.

作者信息

Zheng Jun, Li Zi Long, Dou Bin, Lu Chao

机构信息

Engineering Faculty, China University of Geosciences, Wuhan, Hubei, P.R. China.

Research Institute No. 717 of shipbuilding Industry Corporation-Wuhan National Laboratory for Optoelectronics, China.

出版信息

Math Biosci Eng. 2019 Feb 19;16(3):1258-1279. doi: 10.3934/mbe.2019061.

Abstract

Wellbore drilling parameters optimization is one of the most important issue in drilling engineering. Rate of penetration or mechanical specific energy was usually utilized as the optimization objective. The rate of penetration directly relates to the drilling cycle, while mechanical specific energy reflects the drilling efficiency. In this paper, except for rate of penetration and mechanical specific energy, the drilling life of bit is also summarized as a comprehensive assessment indicator in wellbore drilling parameters optimization problem. The drilling life of bit is taken into consideration for the design and manufacturing cost of bit compose a significant part of the drilling cost and the bit drilling life greatly influences the drilling efficiency. However, those objectives are usually related in a highly nonlinear relationship and in conflict with each other. Thus, a multi-objective cellular particle swarm optimization (MOCPSO) is developed to solve the three-objective drilling parameters optimization problem. Moreover, the radius basis function (RBF) method is employed into the formation parameters identification for rate of penetration model. Performance of MOCPSO is investigated by taken a comparison with multi-objective PSO and non-dominated sorting genetic algorithm-II (NSGA-II). Effect of the four commonly used neighborhood function is also investigated by making contrasts with each other. It can be inferred that MOCPSO is statistically superior to both multi-objective PSO, NSGA-II at the 0.05 level of significance on the wellbore drilling parameters optimization problem. And the four commonly used neighborhood templates perform comparable with each other, and are not statistically different for the drilling parameters optimization problem.

摘要

井筒钻进参数优化是钻井工程中最重要的问题之一。机械钻速或机械比能通常被用作优化目标。机械钻速直接关系到钻井周期,而机械比能反映了钻井效率。在本文中,除了机械钻速和机械比能外,钻头的钻进寿命也被归纳为井筒钻进参数优化问题中的一个综合评价指标。考虑钻头钻进寿命是因为钻头的设计和制造成本占钻井成本的很大一部分,并且钻头的钻进寿命对钻井效率有很大影响。然而,这些目标通常具有高度非线性关系且相互冲突。因此,开发了一种多目标细胞粒子群优化算法(MOCPSO)来解决三目标钻进参数优化问题。此外,采用径向基函数(RBF)方法进行机械钻速模型的地层参数识别。通过与多目标粒子群优化算法和非支配排序遗传算法-II(NSGA-II)进行比较,研究了MOCPSO的性能。还通过相互对比研究了四种常用邻域函数的效果。可以推断,在井筒钻进参数优化问题上,MOCPSO在0.05的显著性水平上在统计上优于多目标粒子群优化算法和NSGA-II。并且四种常用邻域模板的性能相当,在钻进参数优化问题上没有统计学差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验