Palliative Care Centre for Excellence in Research and Education, Singapore.
Department of Palliative Medicine, Tan Tock Seng Hospital, Singapore.
BMJ Support Palliat Care. 2020 Dec;10(4):e34. doi: 10.1136/bmjspcare-2018-001702. Epub 2019 Apr 4.
To develop and validate a simple prognostic tool for early prediction of survival of patients with advanced cancer in a tertiary care setting.
Prospective cohort study with 2 years' follow-up.
Single tertiary teaching hospital in Singapore.
The study includes consecutive patients diagnosed with advanced cancer who were referred to a palliative care unit between 2013 and 2015 (N=840). Data were randomly split into training (n=560) and validation (n=280) sets.
743 (88.5%) patients died with a mean follow-up of 97.0 days (SD 174.0). Cox regression modelling was used to build a prognostic model, cross-validating with six randomly split dataset pairs. Predictor variables for the model included functional status (Palliative Performance Scale, PPS V.2), symptoms (Edmonton Symptom Assessment System, ESASr), clinical assessment (eg, the number of organ systems with metastasis, serum albumin and total white cell count level) and patient demographics. The area under the receiver operating characteristic curve using the final averaged prognostic model was between 0.69 and 0.75. Our model classified patients into three prognostic groups, with a median survival of 79.0 days (IQR 175.0) for the low-risk group (0-1.5 points), 42.0 days (IQR 75.0) for the medium-risk group (2.0-5.5 points), and 15.0 days (IQR 28.0) for the high-risk group (6.0-10.5 points).
PROgnostic Model for Advanced Cancer (PRO-MAC) takes into account patient and disease-related factors and identify high-risk patients with 90-day mortality. PPS V.2 and ESASr are important predictors. PRO-MAC will help physicians identify patients earlier for supportive care, facilitating multidisciplinary, shared decision-making.
开发并验证一种简单的预后工具,以便在三级保健环境中对晚期癌症患者的生存进行早期预测。
前瞻性队列研究,随访 2 年。
新加坡一家三级教学医院。
本研究纳入了 2013 年至 2015 年间被转诊至姑息治疗病房的连续诊断为晚期癌症的患者(n=840)。数据随机分为训练集(n=560)和验证集(n=280)。
743(88.5%)名患者死亡,平均随访 97.0 天(SD 174.0)。使用 Cox 回归模型构建预后模型,并使用 6 个随机划分的数据集对其进行交叉验证。模型的预测变量包括功能状态(姑息治疗表现量表,PPS V.2)、症状(埃德蒙顿症状评估系统,ESASr)、临床评估(例如,转移的器官系统数量、血清白蛋白和总白细胞计数水平)和患者人口统计学特征。使用最终平均预后模型的受试者工作特征曲线下面积在 0.69 至 0.75 之间。我们的模型将患者分为三个预后组,低危组(0-1.5 分)的中位生存时间为 79.0 天(IQR 175.0),中危组(2.0-5.5 分)的中位生存时间为 42.0 天(IQR 75.0),高危组(6.0-10.5 分)的中位生存时间为 15.0 天(IQR 28.0)。
晚期癌症预后模型(PRO-MAC)考虑了患者和疾病相关因素,并确定了 90 天死亡率较高的高危患者。PPS V.2 和 ESASr 是重要的预测指标。PRO-MAC 将帮助医生更早地识别需要支持性护理的患者,促进多学科、共同决策。