Suppr超能文献

机器学习方法分析语音诱发的神经生理响应。

Machine Learning Approaches to Analyze Speech-Evoked Neurophysiological Responses.

机构信息

Department of Communication Sciences and Disorders, The University of Texas at Austin.

Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh.

出版信息

J Speech Lang Hear Res. 2019 Mar 25;62(3):587-601. doi: 10.1044/2018_JSLHR-S-ASTM-18-0244.

Abstract

Purpose Speech-evoked neurophysiological responses are often collected to answer clinically and theoretically driven questions concerning speech and language processing. Here, we highlight the practical application of machine learning (ML)-based approaches to analyzing speech-evoked neurophysiological responses. Method Two categories of ML-based approaches are introduced: decoding models, which generate a speech stimulus output using the features from the neurophysiological responses, and encoding models, which use speech stimulus features to predict neurophysiological responses. In this review, we focus on (a) a decoding model classification approach, wherein speech-evoked neurophysiological responses are classified as belonging to 1 of a finite set of possible speech events (e.g., phonological categories), and (b) an encoding model temporal response function approach, which quantifies the transformation of a speech stimulus feature to continuous neural activity. Results We illustrate the utility of the classification approach to analyze early electroencephalographic (EEG) responses to Mandarin lexical tone categories from a traditional experimental design, and to classify EEG responses to English phonemes evoked by natural continuous speech (i.e., an audiobook) into phonological categories (plosive, fricative, nasal, and vowel). We also demonstrate the utility of temporal response function to predict EEG responses to natural continuous speech from acoustic features. Neural metrics from the 3 examples all exhibit statistically significant effects at the individual level. Conclusion We propose that ML-based approaches can complement traditional analysis approaches to analyze neurophysiological responses to speech signals and provide a deeper understanding of natural speech and language processing using ecologically valid paradigms in both typical and clinical populations.

摘要

目的 语音诱发的神经生理反应通常被采集,以回答与言语和语言处理有关的临床和理论驱动问题。在这里,我们强调了基于机器学习(ML)的方法在分析语音诱发的神经生理反应中的实际应用。方法 介绍了两种基于 ML 的方法:解码模型,使用神经生理反应的特征生成语音刺激输出;以及编码模型,使用语音刺激特征来预测神经生理反应。在这篇综述中,我们重点介绍(a)一种解码模型分类方法,其中语音诱发的神经生理反应被分类为属于有限数量的可能语音事件之一(例如,语音类别),以及(b)一种编码模型时间响应函数方法,该方法量化了语音刺激特征到连续神经活动的转换。结果 我们说明了分类方法在分析来自传统实验设计的汉语词汇声调类别的早期脑电图(EEG)反应以及将由自然连续语音(即有声读物)引起的英语音素的 EEG 反应分类为语音类别的(爆破音、摩擦音、鼻音和元音)中的效用。我们还展示了时间响应函数从声学特征预测自然连续语音的 EEG 反应的效用。这三个例子中的神经指标在个体水平上都表现出统计学上显著的效应。结论 我们提出,基于 ML 的方法可以补充传统的分析方法,以分析语音信号的神经生理反应,并使用典型和临床人群中的生态有效范式,提供对自然言语和语言处理的更深入理解。

相似文献

1
Machine Learning Approaches to Analyze Speech-Evoked Neurophysiological Responses.
J Speech Lang Hear Res. 2019 Mar 25;62(3):587-601. doi: 10.1044/2018_JSLHR-S-ASTM-18-0244.
2
Vowel decoding from single-trial speech-evoked electrophysiological responses: A feature-based machine learning approach.
Brain Behav. 2017 Apr 26;7(6):e00665. doi: 10.1002/brb3.665. eCollection 2017 Jun.
4
Indexing cortical entrainment to natural speech at the phonemic level: Methodological considerations for applied research.
Hear Res. 2017 May;348:70-77. doi: 10.1016/j.heares.2017.02.015. Epub 2017 Feb 27.
5
Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.
BMC Neurosci. 2017 Mar 22;18(1):34. doi: 10.1186/s12868-017-0353-4.
6
Decoding speech sounds from neurophysiological data: Practical considerations and theoretical implications.
Psychophysiology. 2024 Apr;61(4):e14475. doi: 10.1111/psyp.14475. Epub 2023 Nov 10.
7
Tracing the emergence of categorical speech perception in the human auditory system.
Neuroimage. 2013 Oct 1;79:201-12. doi: 10.1016/j.neuroimage.2013.04.093. Epub 2013 May 3.
8
Language related differences of the sustained response evoked by natural speech sounds.
PLoS One. 2017 Jul 20;12(7):e0180441. doi: 10.1371/journal.pone.0180441. eCollection 2017.
9
Effects of language experience and stimulus context on the neural organization and categorical perception of speech.
Neuroimage. 2015 Oct 15;120:191-200. doi: 10.1016/j.neuroimage.2015.06.087. Epub 2015 Jul 3.
10
Neural responses to uninterrupted natural speech can be extracted with precise temporal resolution.
Eur J Neurosci. 2010 Jan;31(1):189-93. doi: 10.1111/j.1460-9568.2009.07055.x. Epub 2009 Dec 21.

引用本文的文献

1
Neural correlates and predictors of speech and language development in infants at elevated likelihood for autism: a systematic review.
Front Hum Neurosci. 2023 Aug 17;17:1211676. doi: 10.3389/fnhum.2023.1211676. eCollection 2023.
2
Cortical-brainstem interplay during speech perception in older adults with and without hearing loss.
Front Neurosci. 2023 Feb 2;17:1075368. doi: 10.3389/fnins.2023.1075368. eCollection 2023.
3
Perceptual warping exposes categorical representations for speech in human brainstem responses.
Neuroimage. 2023 Apr 1;269:119899. doi: 10.1016/j.neuroimage.2023.119899. Epub 2023 Jan 28.
4
Auditory Evoked Potentials in Communication Disorders: An Overview of Past, Present, and Future.
Semin Hear. 2022 Oct 26;43(3):137-148. doi: 10.1055/s-0042-1756160. eCollection 2022 Aug.
5
Translational Applications of Machine Learning in Auditory Electrophysiology.
Semin Hear. 2022 Oct 26;43(3):240-250. doi: 10.1055/s-0042-1756166. eCollection 2022 Aug.
6
Implementation of Machine Learning on Human Frequency-Following Responses: A Tutorial.
Semin Hear. 2022 Oct 26;43(3):251-274. doi: 10.1055/s-0042-1756219. eCollection 2022 Aug.
7
Brainstem speech encoding is dynamically shaped online by fluctuations in cortical α state.
Neuroimage. 2022 Nov;263:119627. doi: 10.1016/j.neuroimage.2022.119627. Epub 2022 Sep 16.
8
Development of executive function-relevant skills is related to both neural structure and function in infants.
Dev Sci. 2022 Nov;25(6):e13323. doi: 10.1111/desc.13323. Epub 2022 Sep 27.
9
Decoding the temporal dynamics of spoken word and nonword processing from EEG.
Neuroimage. 2022 Oct 15;260:119457. doi: 10.1016/j.neuroimage.2022.119457. Epub 2022 Jul 14.

本文引用的文献

1
The revolution will not be controlled: natural stimuli in speech neuroscience.
Lang Cogn Neurosci. 2018 Jul 22;35(5):573-582. doi: 10.1080/23273798.2018.1499946. eCollection 2020.
2
Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech.
Neuroscience. 2018 Aug 1;384:64-75. doi: 10.1016/j.neuroscience.2018.05.023. Epub 2018 May 24.
3
Tracing the Trajectory of Sensory Plasticity across Different Stages of Speech Learning in Adulthood.
Curr Biol. 2018 May 7;28(9):1419-1427.e4. doi: 10.1016/j.cub.2018.03.026. Epub 2018 Apr 19.
4
Cortical Measures of Phoneme-Level Speech Encoding Correlate with the Perceived Clarity of Natural Speech.
eNeuro. 2018 Apr 16;5(2). doi: 10.1523/ENEURO.0084-18.2018. eCollection 2018 Mar-Apr.
5
Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia.
Neuroimage. 2018 Jul 15;175:70-79. doi: 10.1016/j.neuroimage.2018.03.072. Epub 2018 Mar 30.
6
Electrophysiological Correlates of Semantic Dissimilarity Reflect the Comprehension of Natural, Narrative Speech.
Curr Biol. 2018 Mar 5;28(5):803-809.e3. doi: 10.1016/j.cub.2018.01.080. Epub 2018 Feb 22.
7
Speech Intelligibility Predicted from Neural Entrainment of the Speech Envelope.
J Assoc Res Otolaryngol. 2018 Apr;19(2):181-191. doi: 10.1007/s10162-018-0654-z. Epub 2018 Feb 20.
8
Auditory Brainstem Responses to Continuous Natural Speech in Human Listeners.
eNeuro. 2018 Feb 9;5(1). doi: 10.1523/ENEURO.0441-17.2018. eCollection 2018 Jan-Feb.
9
Real-time classification of auditory sentences using evoked cortical activity in humans.
J Neural Eng. 2018 Jun;15(3):036005. doi: 10.1088/1741-2552/aaab6f. Epub 2018 Jan 30.
10
Decoding the auditory brain with canonical component analysis.
Neuroimage. 2018 May 15;172:206-216. doi: 10.1016/j.neuroimage.2018.01.033. Epub 2018 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验