Department of Biological Structure, Molecular and Cellular Biology Graduate Program, Institute for Stem Cells and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98195, United States.
Department of Biological Structure, Molecular and Cellular Biology Graduate Program, Institute for Stem Cells and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98195, United States.
Semin Cell Dev Biol. 2020 Jan;97:63-73. doi: 10.1016/j.semcdb.2019.04.001. Epub 2019 May 9.
Damage to neuronal tissues in mammals leads to permanent loss of tissue function that can have major health consequences. While mammals have no inherent regenerative capacity to functionally repair neuronal tissue, other species such as amphibians and teleost fish readily replace damaged tissue. The exploration of development and native regeneration can thus inform the process of inducing regeneration in non-regenerative systems, which can be used to develop new therapeutics. Increasing evidence points to an epigenetic component in the regulation of the changes in cellular gene expression necessary for regeneration. In this review, we compare evidence of epigenetic roles in development and regeneration of neuronal tissue. We have focused on three key systems of important clinical significance: the neural retina, the inner ear, and the spinal cord in regenerative and non-regenerative species. While evidence for epigenetic regulation of regeneration is still limited, changes in DNA accessibility, histone acetylation and DNA methylation have all emerged as key elements in this process. To date, most studies have used broadly acting experimental manipulations to establish a role for epigenetics in regeneration, but the advent of more targeted approaches to modify the epigenome will be critical to dissecting the relative contributions of these regulatory factors in this process and the development of methods to stimulate the regeneration in those organisms like ourselves where only limited regeneration occurs in these neural systems.
哺乳动物的神经元组织损伤会导致组织功能的永久性丧失,从而产生重大的健康后果。尽管哺乳动物没有内在的再生能力来功能性地修复神经元组织,但其他物种,如两栖动物和硬骨鱼,很容易替换受损组织。因此,对发育和天然再生的探索可以为诱导非再生系统再生的过程提供信息,从而可以开发新的治疗方法。越来越多的证据表明,在调节再生所需的细胞基因表达变化方面存在表观遗传成分。在这篇综述中,我们比较了表观遗传在神经元组织发育和再生中的作用的证据。我们集中讨论了三个具有重要临床意义的关键系统:神经视网膜、内耳和脊髓在再生和非再生物种中的作用。虽然表观遗传调控再生的证据仍然有限,但 DNA 可及性、组蛋白乙酰化和 DNA 甲基化的变化都已成为这个过程的关键因素。迄今为止,大多数研究都使用广泛作用的实验操作来确定表观遗传学在再生中的作用,但采用更有针对性的方法来修饰表观基因组,对于剖析这些调节因子在这个过程中的相对贡献以及开发刺激我们自身这些神经组织中有限再生的方法将是至关重要的。