Laboratory for Vascular Translational Science (LVTS), Inserm U1148, Université Paris Diderot, Université Paris 13, Hôpital Bichat, 46 rue Henri Huchard, 75877 Paris Cedex 18, France; Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000, Neuville sur Oise, France; Translational Biology and Engineering Program, Ted Rodgers Centre for Heart Research, Institute of Biomaterials and Biomedical Engineering (IBBME) and the Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe), Institut des Matériaux, Maison International de la Recherche, Université de Cergy-Pontoise, 95000, Neuville sur Oise, France.
Colloids Surf B Biointerfaces. 2019 Jul 1;179:114-120. doi: 10.1016/j.colsurfb.2019.03.040. Epub 2019 Mar 26.
Biomaterial implants often lead to specific tissue reactions that could compromise their bio-integration and/or optimal cellular interactions. Polyurethanes (PU) are of particular interest as coatings to mask CoCr's bioactivity, since they are generally more biocompatible than metal substrates, present a broad range of chemistry, and have highly tunable-mechanical properties. In the current work, complex polyvinyl-urethanes (referred to as D-PHI materials) are studied for their surface phase structures: specifically, an original D-PHI polymer (O-D-PHI) and a differential formulation with relatively higher hydrophobic and ionic content (HHHI) are of interest. The PUs are diluted in tetrahydrofuran (THF) to generate thin films which differentially influence the physical and chemical properties of the D-PHI coatings. AFM images over time show the gradual appearance of domains exhibiting crystalline organisation, and whose shape and size were dependent on D-PHI thickness (thin films vs non-solvent cast resin materials). After three weeks, a complete stabilization of the crystal state is observed. The thin coatings are stable in an aqueous and 37 °C environment. The adsorption of two human plasmatic proteins Immunoglobulin G (IgG) and Fibronectin (Fn), involved in inflammation and coagulation, was studied. The exposure of specific protein sequences (IgG-Fab, Fn-Cell Binding Domain and Fn-N-terminal domain) were dramatically reduced on both D-PHI materials when compared to bare metal CoCr. The implications of these findings would be relevant to defining coating strategies used to improve the blood clotting and immune cell reactivity to CoCr implant materials.
生物材料植入物通常会导致特定的组织反应,从而影响其生物整合和/或最佳细胞相互作用。聚氨基甲酸酯(PU)作为涂层来掩盖 CoCr 的生物活性特别有趣,因为它们通常比金属基底更具生物相容性,具有广泛的化学性质,并且具有高度可调的机械性能。在目前的工作中,研究了复杂的聚氯乙烯-氨基甲酸酯(称为 D-PHI 材料)的表面相结构:具体来说,对原始的 D-PHI 聚合物(O-D-PHI)和具有相对较高疏水性和离子含量的差分配方(HHHI)感兴趣。将 PUs 稀释在四氢呋喃(THF)中以生成薄膜,该薄膜会对 D-PHI 涂层的物理和化学性质产生差异影响。随着时间的推移,AFM 图像显示出逐渐出现表现出结晶组织的区域,其形状和大小取决于 D-PHI 的厚度(薄膜与非溶剂铸型树脂材料)。三周后,观察到晶体状态完全稳定。在水和 37°C 的环境中,薄涂层稳定。研究了两种与人血浆蛋白免疫球蛋白 G(IgG)和纤连蛋白(Fn)相关的蛋白的吸附,这两种蛋白都参与炎症和凝血。与裸 CoCr 相比,在两种 D-PHI 材料上,暴露的特定蛋白序列(IgG-Fab、Fn-细胞结合域和 Fn-N 末端域)显着减少。这些发现的意义在于,它们对于定义用于改善 CoCr 植入材料的凝血和免疫细胞反应的涂层策略具有重要意义。