School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
Bioresour Technol. 2019 Jul;284:302-314. doi: 10.1016/j.biortech.2019.03.127. Epub 2019 Mar 27.
This study demonstrated a novel process configuration for sustaining mainstream anammox by integrating the anammox and endogenous partial denitrification-and-phosphorus removal (EPDPR) in two-stage sequencing batch reactors (SBRs). In the EPDPR-SBR, high nitrate-to-nitrite transformation (68.2%) and P removal (99.3%) were achieved by adjusting the anaerobic/anoxic/aerobic durations and influent nitrate concentration, providing a suitable NO-N/NH-N (∼1.37) for subsequent anammox reaction. In the Anammox-SBR, ∼95% of TN was removed without external carbon and oxygen demands. Satisfactory effluent quality (∼6 mgTN/L and 0.2 mgP/L) achieved in the integrated EPDPR/anammox opens a new window towards the energy-efficient wastewater treatment. Microbial analysis further revealed that Dechloromonas (1.6-9.6%) and Candidatus Competibacter (6.4-5.8%) respectively conducted P removal and NO-N production (79.2%) from NO-N denitrification in the EPDPR-SBR, whereas Candidatus Kuenenia (7.0-29.7%) dominated NO-N and NH-N removal (91.3% and 99.5%) in the Anammox-SBR, with 10 genera identified as denitrifying bacteria (0.6-8.1%) further reduced 18.9% of the produced NO-N.
本研究展示了一种通过在两段序批式反应器(SBR)中整合厌氧氨氧化和内源性部分反硝化除磷(EPDPR)来维持主流厌氧氨氧化的新工艺配置。在 EPDPR-SBR 中,通过调整厌氧/缺氧/好氧时间和进水硝酸盐浓度,实现了高硝酸盐至亚硝酸盐的转化(68.2%)和磷去除(99.3%),为后续的厌氧氨氧化反应提供了适宜的 NO-N/NH-N(约 1.37)。在 Anammox-SBR 中,约 95%的总氮去除不需要外加碳源和氧气。集成 EPDPR/厌氧氨氧化实现的令人满意的出水水质(约 6mgTN/L 和 0.2mgP/L)为节能型废水处理开辟了新的途径。微生物分析进一步表明,在 EPDPR-SBR 中,Dechloromonas(1.6-9.6%)和 Candidatus Competibacter(6.4-5.8%)分别通过从 NO-N 反硝化中去除磷和产生 NO-N(79.2%),而 Candidatus Kuenenia(7.0-29.7%)在 Anammox-SBR 中主导 NO-N 和 NH-N 去除(91.3%和 99.5%),其中 10 个属被鉴定为反硝化细菌(0.6-8.1%),进一步减少了 18.9%的产生的 NO-N。