Suppr超能文献

HSI-NIR 图像的创新多元策略,用于自动检测绿咖啡中的缺陷。

An innovative multivariate strategy for HSI-NIR images to automatically detect defects in green coffee.

机构信息

DIFAR - Department of Pharmacy, University of Genova, Viale Cembrano, 4, 16148 Genova, Italy.

DIFAR - Department of Pharmacy, University of Genova, Viale Cembrano, 4, 16148 Genova, Italy.

出版信息

Talanta. 2019 Jul 1;199:270-276. doi: 10.1016/j.talanta.2019.02.049. Epub 2019 Feb 12.

Abstract

In the present study, an advanced and original multivariate strategy for the processing of hyperspectral images in the near-infrared region is proposed to automatically detect physico-chemical defects in green coffee, which are similar one to each other by naked eye. An object-based approach for the characterization of individual beans, rather than single pixels, was adopted, calculating a series of descriptive parameters characterizing the distribution of scores on the lowest-order principal components. On such parameters, the k-nearest neighbors (k-NN) classification algorithm was applied and the predictive results on the test samples indicate that this approach is able not only to distinguish defective beans from non-defective ones, but also to differentiate the various types of defects. Hyperspectral imaging is demonstrated to be a valid alternative for the sorting of green beans - a crucial phase for coffee import/export.

摘要

在本研究中,提出了一种先进且原创的近红外高光谱图像处理多元策略,以自动检测肉眼相似的绿咖啡的物理化学缺陷。采用基于对象的方法对单个咖啡豆进行特征描述,而不是对单个像素进行特征描述,计算一系列描述性参数来描述最低阶主成分上的得分分布。在这些参数上,应用了 k-最近邻(k-NN)分类算法,对测试样本的预测结果表明,该方法不仅能够区分缺陷豆和非缺陷豆,还能够区分各种类型的缺陷。高光谱成像被证明是绿咖啡豆分选的有效替代方法——这是咖啡进出口的关键阶段。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验