Suppr超能文献

皮肤分子特征纲要确定了与系统性硬皮病纤维化相关的关键病理特征。

Compendium of skin molecular signatures identifies key pathological features associated with fibrosis in systemic sclerosis.

机构信息

Division of Rheumatology, Department of Internal Medicine, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

出版信息

Ann Rheum Dis. 2019 Jun;78(6):817-825. doi: 10.1136/annrheumdis-2018-214778. Epub 2019 Apr 5.

Abstract

OBJECTIVES

Treatment of patients with systemic sclerosis (SSc) can be challenging because of clinical heterogeneity. Integration of genome-scale transcriptomic profiling for patients with SSc can provide insights on patient categorisation and novel drug targets.

METHODS

A normalised compendium was created from 344 skin samples of 173 patients with SSc, covering an intersection of 17 424 genes from eight data sets. Differentially expressed genes (DEGs) identified by three independent methods were subjected to functional network analysis, where samples were grouped using non-negative matrix factorisation. Finally, we investigated the pathways and biomarkers associated with skin fibrosis using gene-set enrichment analysis.

RESULTS

We identified 1089 upregulated DEGs, including 14 known genetic risk factors and five potential drug targets. Pathway-based subgrouping revealed four distinct clusters of patients with SSc with distinct activity signatures for SSc-relevant pathways. The inflammatory subtype was related to significant improvement in skin fibrosis at follow-up. The phosphoinositide-3-kinase-protein kinase B (PI3K-Akt) signalling pathway showed both the closest correlation and temporal pattern to skin fibrosis score. , , , , and were leading-edge genes of the PI3K-Akt pathway in skin fibrogenesis.

CONCLUSIONS

Construction and analysis of normalised skin transcriptomic compendia can provide useful insights on pathway involvement by SSc subsets and discovering viable biomarkers for a skin fibrosis index. Particularly, the PI3K-Akt pathway and its leading players are promising therapeutic targets.

摘要

目的

由于系统性硬化症 (SSc) 存在临床异质性,因此患者的治疗颇具挑战性。对 SSc 患者进行全基因组转录组分析有助于深入了解患者分类和新的药物靶点。

方法

从 173 例 SSc 患者的 344 个皮肤样本中创建了一个归一化的综合数据库,涵盖了 8 个数据集 17424 个基因的交集。使用三种独立方法鉴定差异表达基因 (DEGs),并进行功能网络分析,其中使用非负矩阵分解对样本进行分组。最后,我们使用基因集富集分析研究与皮肤纤维化相关的途径和生物标志物。

结果

我们鉴定出 1089 个上调的 DEGs,包括 14 个已知的遗传风险因素和 5 个潜在的药物靶点。基于途径的亚组分析揭示了 SSc 患者存在四个不同的亚群,其 SSc 相关途径的活性特征也各不相同。炎症亚型与随访时皮肤纤维化的显著改善相关。磷酸肌醇-3-激酶蛋白激酶 B (PI3K-Akt) 信号通路与皮肤纤维化评分具有最密切的相关性和时间模式。在皮肤纤维化中,PI3K-Akt 通路的 、 、 、 和 是最前沿的基因。

结论

构建和分析归一化皮肤转录组综合数据库可以深入了解 SSc 亚群的途径参与情况,并发现皮肤纤维化指数的可行生物标志物。特别是,PI3K-Akt 通路及其主要参与者是很有前途的治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验