Suppr超能文献

开发用于预测数据匮乏金属毒性的定量离子性质-活性关系-生物配体模型(QICARs-BLM)耦合模型。

Development of a coupled model of quantitative ion character-activity relationships-biotic ligand model (QICARs-BLM) for predicting toxicity for data poor metals.

机构信息

The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China.

The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China.

出版信息

J Hazard Mater. 2019 Jul 5;373:620-629. doi: 10.1016/j.jhazmat.2019.03.094. Epub 2019 Mar 29.

Abstract

The biotic ligand model (BLM) is proposed as a tool to quantitatively evaluate biological toxicity of metals considering both metal speciation and the influence of environmental conditions. The model assumes that biological sites bind to metals as biotic ligands (BLs) and obtains a series of BLM parameters including conditional binding constants (K). However, developing a BLM for each metal and biology takes a lot of experimentation. In the present study, relationships between metal ionic characters and BLM parameter K were respectively investigated for three terrestrial organisms. The results showed that ionization potential was the most strongly related to log K for barley (R = 0.845, p <  0.01) and earthworm (R = 0.881, p <  0.01), and electronegativity index most significantly related to log K for lettuce (R = 0.835, p <  0.01). Based on these relationships, a set of quantitative ion character-activity relationships (QICARs) were developed for predicting log K of metals. Then the QICAR were coupled with BLM and a novel QICAR-BLM was constructed. Finally, the QICAR-BLM was applied to predict EC of other unknown-toxicity metals for selected species, and compensate for the lack of toxicity data for a large number of metals in soil.

摘要

生物配体模型(BLM)被提议作为一种工具,用于定量评估金属的生物毒性,同时考虑金属形态和环境条件的影响。该模型假设生物位点作为生物配体(BLs)与金属结合,并获得一系列 BLM 参数,包括条件结合常数(K)。然而,为每种金属和生物开发 BLM 需要大量的实验。在本研究中,分别研究了三种陆生生物的金属离子特性与 BLM 参数 K 之间的关系。结果表明,电离势与大麦(R = 0.845,p < 0.01)和蚯蚓(R = 0.881,p < 0.01)的 log K 关系最密切,电负性指数与生菜的 log K 关系最密切(R = 0.835,p < 0.01)。基于这些关系,开发了一组用于预测金属 log K 的定量离子特性-活性关系(QICAR)。然后将 QICAR 与 BLM 耦合,构建了一个新的 QICAR-BLM。最后,将 QICAR-BLM 应用于预测选定物种未知毒性金属的 EC 值,以弥补土壤中大量金属缺乏毒性数据的问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验