Niyogi Soumya, Wood Chris M
Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
Environ Sci Technol. 2004 Dec 1;38(23):6177-92. doi: 10.1021/es0496524.
The biotic ligand model (BLM) is a mechanistic approach that greatly improves our ability to generate site-specific ambient water quality criteria (AWQC)for metals in the natural environment relative to conventional relationships based only on hardness. The model is flexible; all aspects of water chemistry that affect toxicity can be included, so the BLM integrates the concept of bioavailability into AWQC--in essence the computational equivalent of water effect ratio (WER) testing. The theory of the BLM evolved from the gill surface interaction model (GSIM) and the free ion activity model (FIAM). Using an equilibrium geochemical modeling framework, the BLM incorporates the competition of the free metal ion with other naturally occurring cations (e.g., Ca2+, Na+, Mg2-, H+), togetherwith complexation by abiotic ligands [e.g., DOM (dissolved organic matter), chloride, carbonates, sulfide] for binding with the biotic ligand, the site of toxic action on the organism. On the basis of fish gill research, the biotic ligands appear to be active ion uptake pathways (e.g., Na+ transporters for copper and silver, Ca2+ transporters for zinc, cadmium, lead, and cobalt), whose geochemical characteristics (affinity = log K, capacity = Bmax) can be quantified in short-term (3-24 h) in vivo gill binding tests. In general, the greater the toxicity of a particular metal, the higher the log K. The BLM quantitatively relates short-term binding to acute toxicity, with the LA50 (lethal accumulation) being predictive of the LC50 (generally 96 h for fish, 48 h for daphnids). We critically evaluate currently available BLMs for copper, silver, zinc, and nickel and gill binding approaches for cadmium, lead, and cobalt on which BLMs could be based. Most BLMs originate from tests with fish and have been recalibrated for more sensitive daphnids by adjustment of LA50 so as to fit the results of toxicity testing. Issues of concern include the arbitrary nature of LA50 adjustments; possible mechanistic differences between daphnids and fish that may alter log K values, particularly for hardness cations (Ca2+, Mg2+); assumption of fixed biotic ligand characteristics in the face of evidence that they may change in response to acclimation and diet; difficulties in dealing with DOM and incorporating its heterogeneity into the modeling framework; and the paucity of validation exercises on natural water data sets. Important needs include characterization of biotic ligand properties at the molecular level; development of in vitro BLMs, extension of the BLM approach to a wider range of organisms, to the estuarine and marine environment, and to deal with metal mixtures; and further development of BLM frameworks to predict chronic toxicity and thereby generate chronic AWQC.
生物配体模型(BLM)是一种机理方法,与仅基于硬度的传统关系相比,它极大地提高了我们为自然环境中的金属生成特定地点的环境水质标准(AWQC)的能力。该模型具有灵活性;可以纳入影响毒性的水化学的各个方面,因此BLM将生物可利用性的概念整合到AWQC中——本质上相当于水效应比(WER)测试的计算等效物。BLM的理论源自鳃表面相互作用模型(GSIM)和自由离子活性模型(FIAM)。使用平衡地球化学建模框架,BLM纳入了自由金属离子与其他天然存在的阳离子(如Ca2+、Na+、Mg2+、H+)的竞争,以及非生物配体[如DOM(溶解有机物)、氯化物、碳酸盐、硫化物]的络合作用,以与生物配体结合,生物配体是对生物体产生毒性作用的部位。基于鱼类鳃的研究,生物配体似乎是活跃的离子摄取途径(如铜和银的Na+转运体,锌、镉、铅和钴的Ca2+转运体),其地球化学特征(亲和力=log K,容量=Bmax)可以在短期(3 - 24小时)体内鳃结合试验中进行量化。一般来说,特定金属的毒性越大,log K值越高。BLM将短期结合与急性毒性定量关联,LA50(致死积累)可预测LC50(鱼类一般为96小时,水蚤为48小时)。我们批判性地评估了目前可用的铜、银、锌和镍的BLM以及BLM可能基于的镉、铅和钴鳃结合方法。大多数BLM源自鱼类试验,并通过调整LA50对更敏感的水蚤进行了重新校准,以使其符合毒性测试结果。令人担忧的问题包括LA50调整的随意性;水蚤和鱼类之间可能改变log K值的潜在机理差异,特别是对于硬度阳离子(Ca2+、Mg2+);面对生物配体特性可能因适应和饮食而改变的证据,仍假设其特性固定不变;处理DOM以及将其异质性纳入建模框架的困难;以及对天然水数据集的验证工作匮乏。重要的需求包括在分子水平上表征生物配体特性;开发体外BLM,将BLM方法扩展到更广泛的生物体、河口和海洋环境以及处理金属混合物;以及进一步开发BLM框架以预测慢性毒性,从而生成慢性AWQC。