Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA.
Department of Chemistry, qLEAP Center for Theoretical Chemistry, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
J Chem Phys. 2019 Apr 7;150(13):134112. doi: 10.1063/1.5053627.
Cluster perturbation (CP) theory was developed in Paper I [F. Pawłowski et al., J. Chem. Phys. 150, 134108 (2019)] for a coupled cluster (CC) target state and is extended in this paper to comprehend a cluster linear (CL) target state, for which the embedding of a CC parent state in the target excitation space is described using a linear parametrization. The theory is developed for determining the energy and molecular properties for a CL state. When CP theory is applied to a CL target state, a series of corrections is determined in orders of the CC parent-state similarity-transformed fluctuation potential, where the zeroth-order term is the energy or molecular property of the CC parent state and where the series formally converges to the energy or molecular property of the CL target state. The determination of energies and molecular properties is simpler for a CL state than for a CC state because the CL state is linearly parametrized. The amplitude equations are quadratic for a CL target state, while quartic for a CC target state, and molecular property expressions for a CL target state have the same simple structure as for a configuration interaction state. The linear parametrization introduces non-size-extensive contributions in the energy and molecular property expressions. However, since the linear parametrization describes the embedding of the CC parent state in the target excitation space, the energy and molecular properties for a CL state are weakly size-extensive. For the energy, weak size-extensivity means that non-size-extensive contributions enter in sixth and higher orders in the CP energy series, whereas for molecular properties, weak size-extensivity means that non-size-extensive contributions enter in second and higher orders. Weak size-extensivity therefore has a little or vanishing effect on calculated energies or molecular properties. The determination of the CP energy and molecular property corrections does not require that amplitude or response equations are solved explicitly for the target state and it becomes computationally tractable to use low-order corrections from these series to obtain energies and molecular properties of CL target state quality. For three simple molecules, HF, N, and CH, the accuracy of the CL approach for ground-state energies is tested using a parent state including single and double excitations (i.e., the CC singles-and-doubles state, CCSD) and a target state that includes triple excitations. It is found that the size-extensive fifth-order CL energies deviate by less than 0.0001 hartree from the energies of a target CC that includes triple excitations (i.e., the CC singles-doubles-and-triples state, CCSDT). CP theory with a CL target state therefore becomes a very attractive replacement of standard CC theory for high-accuracy energy and molecular property calculations, in which triple and higher excitation levels are considered.
簇微扰 (CP) 理论在文献 I [F. Pawłowski 等人,J. Chem. Phys. 150, 134108 (2019)] 中被开发用于耦合簇 (CC) 目标态,并在本文中扩展到包含簇线性 (CL) 目标态,其中 CC 母体态在目标激发空间中的嵌入使用线性参数化来描述。该理论用于确定 CL 态的能量和分子性质。当 CP 理论应用于 CL 目标态时,在 CC 母体态相似变换波动势的阶数中确定一系列修正项,其中零阶项是 CC 母体态的能量或分子性质,并且该级数形式上收敛到 CL 目标态的能量或分子性质。对于 CL 态,由于 CL 态是线性参数化的,因此确定能量和分子性质比 CC 态更简单。对于 CL 目标态,振幅方程是二次的,而对于 CC 目标态,振幅方程是四次的,并且 CL 目标态的分子性质表达式与组态相互作用态具有相同的简单结构。线性参数化在能量和分子性质表达式中引入了非尺寸扩展贡献。然而,由于线性参数化描述了 CC 母体态在目标激发空间中的嵌入,因此 CL 态的能量和分子性质具有弱尺寸扩展性。对于能量,弱尺寸扩展性意味着非尺寸扩展贡献在 CP 能量级数的第六阶及更高阶进入,而对于分子性质,弱尺寸扩展性意味着非尺寸扩展贡献在二阶及更高阶进入。因此,弱尺寸扩展性对计算出的能量或分子性质几乎没有或没有影响。CP 能量和分子性质修正的确定不需要显式求解目标态的振幅或响应方程,并且可以计算上可行的是,使用这些级数中的低阶修正来获得 CL 目标态质量的能量和分子性质。对于三个简单分子 HF、N 和 CH,使用包含单重和双重激发的母体态(即 CC 单重和双重态,CCSD)和包含三重激发的目标态,测试了 CL 方法对基态能量的准确性。发现具有尺寸扩展性的五阶 CL 能量与包含三重激发的目标 CC(即 CC 单重、双重和三重态,CCSDT)的能量相差小于 0.0001 哈特里。因此,对于考虑三重和更高激发态的高精度能量和分子性质计算,CP 理论与 CL 目标态相结合成为标准 CC 理论的极具吸引力的替代品。