Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA.
Department of Chemistry, qLEAP Center for Theoretical Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
J Chem Phys. 2019 Apr 7;150(13):134109. doi: 10.1063/1.5053167.
In cluster perturbation (CP) theory, we consider a target excitation space relative to a Hartree-Fock state and partition the target excitation space into a parent excitation space and an auxiliary excitation space. The zeroth-order state is in CP theory a coupled cluster (CC) state in the parent excitation space, and the target state is a CC state in the target excitation space. In this paper, we derive CP series for excitation energies in orders of the CC parent-state similarity-transformed fluctuation potential where the zeroth-order term in the series is an excitation energy for the CC parent state response eigenvalue equation and where the series formally converge to an excitation energy for the CC target state response eigenvalue equation. We give explicit expressions for the lowest-order excitation energy corrections. We also report calculations for CP excitation energy series for various parent and target excitation spaces and examine how well the lower-order corrections can reproduce the total excitation energies. Considering the fast local convergence we have observed for the CP excitation energy series, it becomes computationally attractive to use low-order corrections in CP series to obtain excitation energies of CC target state quality. For the CPS(D-n) series, the first-order correction vanishes, the second-order correction becomes the CIS(D) model, and for the CPS(D-3) model, our calculations suggest that excitation energies of CCSD quality are obtained. The numerical results also suggest that a similar behavior can be seen for the low-order excitation energy corrections for CP series where the parent state contains more than a singles excitation space, e.g., for the CPSD(T) model. We therefore expect the low-order excitation energy corrections in CP series soon to become state-of-the-art models for determining excitation energies of CC target state quality.
在集群微扰(CP)理论中,我们考虑相对于哈特ree-fock 态的目标激发空间,并将目标激发空间划分为母体激发空间和辅助激发空间。零阶态在 CP 理论中是母体激发空间中的耦合簇(CC)态,而目标态是目标激发空间中的 CC 态。在本文中,我们推导出 CP 级数,用于计算 CC 母体态相似变换波动势的激发能,级数中的零阶项是 CC 母体态响应特征方程的激发能,级数形式上收敛到 CC 目标态响应特征方程的激发能。我们给出了最低阶激发能修正的显式表达式。我们还报告了各种母体和目标激发空间的 CP 激发能级数的计算,并研究了低阶修正对总激发能的再现能力。考虑到我们观察到的 CP 激发能级数的快速局部收敛性,使用 CP 级数中的低阶修正来获得 CC 目标态质量的激发能在计算上变得很有吸引力。对于 CPS(D-n)级数,一阶修正为零,二阶修正成为 CIS(D)模型,而对于 CPS(D-3)模型,我们的计算表明,获得了 CCSD 质量的激发能。数值结果还表明,对于包含多个单激发空间的母体状态的 CP 级数的低阶激发能修正,也可以看到类似的行为,例如对于 CPSD(T)模型。因此,我们预计 CP 级数中的低阶激发能修正很快将成为确定 CC 目标态质量激发能的最新模型。