Suppr超能文献

单级部分亚硝化/厌氧氨氧化工艺脱氮性能、微生物群落演替及神经网络建模。

Performance, microbial community evolution and neural network modeling of single-stage nitrogen removal by partial-nitritation/anammox process.

机构信息

Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Province, Ganzhou City 341000, PR China.

Jiangxi University of Science and Technology, School of Resources and Environmental Engineering, Jiangxi Province, Ganzhou City 341000, PR China.

出版信息

Bioresour Technol. 2019 Jul;284:359-372. doi: 10.1016/j.biortech.2019.03.008. Epub 2019 Mar 5.

Abstract

Single-stage nitrogen removal by anammox/partial-nitritation (SNAP) process was proposed and explored in a packed-bed-EGSB reactor to treat nitrogen-rich wastewater. With dissolved oxygen (DO) maintained within 0.2-0.5 mg/L, reactor performance and microbial community dynamics were evaluated and reported. To ascertain whether control/prediction of the SNAP process was feasible with mathematical modeling, a novel 3-layered backpropagation-artificial-neural-network-(BANN) was also developed to model nitrogen removal efficiencies. When NLR of 300 gN/m·d and DO of <0.3 mg/L was employed, the SNAP-process demonstrated autotrophic nitrogen removal pathways with NH-N and TN removal of 91.1% and 81.9%, respectively. Microbial community succession revealed by 16S rRNA high-throughput gene-sequencing indicated that Candidatus-Kuenenia-(33.83%), Nitrosomonas-(3.4%) Armatimonadetes_gp5-(1.39%), Ignavibacterium-(1.80%), Thiobacillus-(1.33%), and Nitrospira-(1.17%) were the most pronounced genera at steady-state. The proposed BANN-model demonstrated high-performance as computational results revealed smaller deviations (±3%) and satisfactory coefficient of determination-(R = 0.989), fractional variance-(FV = 0.0107), and index of agreement-(IA = 0.997). Thus, forecasting the efficiency of a SNAP-process with neural-network modeling was highly feasible.

摘要

单级氨氮去除/部分亚硝化(SNAP)工艺在填充床 EGSB 反应器中被提出并用于处理富氮废水。在维持溶解氧(DO)在 0.2-0.5mg/L 范围内的情况下,评估和报告了反应器性能和微生物群落动态。为了确定是否可以通过数学建模来控制/预测 SNAP 工艺,还开发了一种新颖的 3 层反向传播人工神经网络(BANN)来模拟氮去除效率。当 NLR 为 300gN/m·d 和 DO<0.3mg/L 时,SNAP 工艺表现出具有 NH-N 和 TN 去除率分别为 91.1%和 81.9%的自养氮去除途径。16S rRNA 高通量基因测序揭示的微生物群落演替表明,Candidatus-Kuenenia-(33.83%)、Nitrosomonas-(3.4%)、Armatimonadetes_gp5-(1.39%)、Ignavibacterium-(1.80%)、Thiobacillus-(1.33%)和 Nitrospira-(1.17%)是稳态下最显著的属。所提出的 BANN 模型表现出高性能,计算结果显示较小的偏差(±3%)和令人满意的决定系数(R=0.989)、方差分数(FV=0.0107)和一致性指数(IA=0.997)。因此,使用神经网络建模对 SNAP 工艺的效率进行预测是非常可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验