Suppr超能文献

健康视觉信息偏好量表的编制与验证。

Development and validation of the Health Visual Information Preference Scale.

机构信息

Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.

Department of Psychology, La Sierra University, Riverside, California, USA.

出版信息

Br J Health Psychol. 2019 Sep;24(3):593-609. doi: 10.1111/bjhp.12370. Epub 2019 Apr 7.

Abstract

OBJECTIVE

Patients are likely to have individual preferences for learning about health, which may influence their comprehension and utilization of health information. Some patients may prefer visual health information, which can make complex health information easier to understand. Aligning health information presentation with preferences may increase understanding and improve health outcomes, yet no scale measures preferences for visual health information.

DESIGN

Two studies examined the psychometric properties of the Health Visual Information Preference Scale (Health VIPS), a new measure designed to assess preferences for visual health information.

METHODS

In Study 1, 103 undergraduate students and 97 patients undergoing colorectal and gynaecological oncology surgery completed the Health VIPS. Exploratory factor analyses (EFA) were conducted for both samples. Internal consistency, test-retest reliability, and validity were assessed in the student sample. In Study 2, 196 outpatients completed the Health VIPS. Confirmatory factor analysis (CFA) was performed on this sample, in addition to measures of reliability and validity.

RESULTS

In Study 1, EFA analysis suggested a two-factor structure. The Health VIPS demonstrated good internal consistency in both the student sample (α = .70-.80) and patient sample (α = .80), and good test-retest reliability in the student sample (r = .63, p < .001). Convergent validity and discriminant validity were also established. In Study 2, the CFA confirmed a two-factor structure is the best model fit for the Health VIPS. The Health VIPS also demonstrated discriminant and convergent validity. Scale item means in all samples were positively skewed, suggesting a general preference for visual health information.

CONCLUSIONS

Initial evidence suggests the Health VIPS has good psychometric properties. This scale could identify patients who would benefit from additional visual aids when receiving health information. Statement of contribution What is already known on this subject? Poor comprehension of health information can lead to misunderstandings of illness and treatment, and potentially non-adherence. It is likely that patients have distinct preferences for how they would choose to receive health information, including information format. Visual health information is becoming more widely used to communicate information about health and illness to patients, although there is no measure to identify those who prefer this information format to standard written health materials. What does this study add? This study describes the first scale to assess preferences for visual health information. This scale could identify patients who would benefit from supplementary visual information in consultations.

摘要

目的

患者可能对学习健康知识有个人偏好,这可能影响他们对健康信息的理解和利用。一些患者可能更喜欢视觉健康信息,因为这可以使复杂的健康信息更容易理解。使健康信息呈现与偏好相匹配可能会提高理解能力并改善健康结果,但目前尚无衡量视觉健康信息偏好的量表。

设计

两项研究检验了新的健康视觉信息偏好量表(Health VIPS)的心理测量学特性,该量表旨在评估对视觉健康信息的偏好。

方法

在研究 1 中,103 名本科生和 97 名接受结直肠和妇科肿瘤手术的患者完成了 Health VIPS。对两个样本进行了探索性因素分析(EFA)。在学生样本中评估了内部一致性、重测信度和效度。在研究 2 中,196 名门诊患者完成了 Health VIPS。在该样本中进行了验证性因素分析(CFA),以及可靠性和有效性的测量。

结果

在研究 1 中,EFA 分析表明存在两因素结构。Health VIPS 在学生样本(α=0.70-0.80)和患者样本(α=0.80)中均具有良好的内部一致性,在学生样本中具有良好的重测信度(r=0.63,p<0.001)。还建立了收敛效度和判别效度。在研究 2 中,CFA 证实两因素结构是 Health VIPS 的最佳模型拟合。Health VIPS 也表现出判别和收敛效度。所有样本的量表项目均值均呈正偏态,表明对视觉健康信息的普遍偏好。

结论

初步证据表明 Health VIPS 具有良好的心理测量学特性。该量表可以识别出在接受健康信息时需要额外视觉辅助的患者。

关于这一主题已经知道些什么?

对健康信息的理解不佳可能导致对疾病和治疗的误解,并且可能导致不依从。

患者对接收健康信息的方式可能有不同的偏好,包括信息格式。尽管有一些衡量标准可以确定那些喜欢标准书面健康材料的患者,但视觉健康信息越来越被用于向患者传达有关健康和疾病的信息,尽管目前还没有衡量标准可以确定哪些患者更喜欢这种信息格式。

这项研究有什么新发现?

本研究描述了第一个评估视觉健康信息偏好的量表。

该量表可以识别出在咨询中需要补充视觉信息的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验