Suppr超能文献

基于重复和近乎重复受害情况对奥地利维也纳公寓盗窃案进行预测的比较分析。

A comparative analysis to forecast apartment burglaries in Vienna, Austria, based on repeat and near repeat victimization.

作者信息

Glasner Philip, Johnson Shane D, Leitner Michael

机构信息

1Department of Geoinformatics-Z_GIS, University of Salzburg, Salzburg, Austria.

SynerGIS Informationssysteme GmbH, Vienna, Austria.

出版信息

Crime Sci. 2018;7(1):9. doi: 10.1186/s40163-018-0083-7. Epub 2018 Aug 20.

Abstract

In this paper, we introduce two methods to forecast apartment burglaries that are based on repeat and near repeat victimization. While the first approach, the "heuristic method" generates buffer areas around each new apartment burglary, the second approach concentrates on forecasting near repeat chain links. These near repeat chain links are events that follow a near repeat pair of an originating and (near) repeat event that is close in space and in time. We name this approach the "near repeat chain method". This research analyzes apartment burglaries from November 2013 to November 2016 in Vienna, Austria. The overall research goal is to investigate whether the near repeat chain method shows better prediction efficiencies (using a capture rate and the prediction accuracy index) while producing fewer prediction areas. Results show that the near repeat chain method proves to be the more efficient compared to the heuristic method for all bandwidth combinations analyzed in this research.

摘要

在本文中,我们介绍了两种基于重复和近重复受害情况来预测公寓盗窃案的方法。第一种方法是“启发式方法”,它围绕每起新的公寓盗窃案生成缓冲区;第二种方法则专注于预测近重复链环节。这些近重复链环节是指在空间和时间上接近的、由一起始发事件和(近)重复事件组成的近重复对所引发的事件。我们将这种方法称为“近重复链方法”。本研究分析了奥地利维也纳2013年11月至2016年11月期间的公寓盗窃案。总体研究目标是调查近重复链方法在产生更少预测区域的同时,是否显示出更好的预测效率(使用捕获率和预测准确性指数)。结果表明,在本研究分析的所有带宽组合中,近重复链方法比启发式方法更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6d8/6417393/a8b6c069b53f/40163_2018_83_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验