Suppr超能文献

足月、无异常、单胎队列中严重新生儿不良结局的交叉验证预测模型。

Cross-validated prediction model for severe adverse neonatal outcomes in a term, non-anomalous, singleton cohort.

作者信息

Flatley Christopher, Gibbons Kristen, Hurst Cameron, Flenady Vicki, Kumar Sailesh

机构信息

Mater Research, Mater Research Institute/University of Queensland, Brisbane, Queensland, Australia.

Mater Medical Research Institute, South Brisbane, Queensland, Australia.

出版信息

BMJ Paediatr Open. 2019 Mar 15;3(1):e000424. doi: 10.1136/bmjpo-2018-000424. eCollection 2019.

Abstract

OBJECTIVE

The aim of this study was to develop a predictive model using maternal, intrapartum and ultrasound variables for a composite of severe adverse neonatal outcomes (SANO) in term infants.

DESIGN

Prospectively collected observational study. Mixed effects generalised linear models were used for modelling. Internal validation was performed using the K-fold cross-validation technique.

SETTING

This was a study of women that birthed at the Mater Mother's Hospital in Brisbane, Australia between January 2010 and April 2017.

PATIENTS

We included all term, non-anomalous singleton pregnancies that had an ultrasound performed between 36 and 38 weeks gestation and had recordings for the umbilical artery pulsatility index, middle cerebral artery pulsatility index and the estimated fetal weight (EFW).

MAIN OUTCOME MEASURES

The components of the SANO were: severe acidosis arterial, admission to the neonatal intensive care unit, Apgar score of ≤3 at 5 min or perinatal death.

RESULTS

There were 5439 women identified during the study period that met the inclusion criteria, with 11.7% of this cohort having SANO. The final generalised linear mixed model consisted of the following variables: maternal ethnicity, socioeconomic score, nulliparity, induction of labour, method of birth and z-scores for EFW and cerebroplacental ratio. The final model had an area under the receiver operating characteristic curve of 0.71.

CONCLUSIONS

The results of this study demonstrate it is possible to predict infants that are at risk of SANO at term with moderate accuracy using a combination of maternal, intrapartum and ultrasound variables. Cross-validation analysis suggests a high calibration of the model.

摘要

目的

本研究旨在利用母亲、分娩期及超声变量建立一个预测足月儿严重不良新生儿结局(SANO)综合指标的预测模型。

设计

前瞻性收集的观察性研究。采用混合效应广义线性模型进行建模。使用K折交叉验证技术进行内部验证。

地点

本研究对象为2010年1月至2017年4月在澳大利亚布里斯班 Mater Mother's 医院分娩的女性。

患者

我们纳入了所有足月、非畸形单胎妊娠,这些妊娠在孕36至38周期间进行了超声检查,并记录了脐动脉搏动指数、大脑中动脉搏动指数和估计胎儿体重(EFW)。

主要观察指标

SANO的组成部分包括:严重动脉酸中毒、入住新生儿重症监护病房、5分钟时Apgar评分≤3或围产期死亡。

结果

研究期间共识别出5439名符合纳入标准的女性,其中11.7%的队列发生了SANO。最终的广义线性混合模型由以下变量组成:母亲种族、社会经济评分、初产、引产、分娩方式以及EFW和脑胎盘比率的z评分。最终模型的受试者工作特征曲线下面积为0.71。

结论

本研究结果表明,结合母亲、分娩期及超声变量,可以以中等准确度预测足月时存在SANO风险的婴儿。交叉验证分析表明该模型具有较高的校准度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39de/6422248/e20849b5be3d/bmjpo-2018-000424f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验